
PyTOUGH Documentation
Release 1.6.2

Adrian Croucher

Apr 04, 2024

CONTENTS

1 Introduction 1
1.1 What is PyTOUGH? . 1
1.2 What are TOUGH2 and AUTOUGH2? . 1
1.3 What is Python? . 2
1.4 Installing PyTOUGH . 5
1.5 Testing PyTOUGH . 6
1.6 Licensing . 7

2 MULgraph geometry files 9
2.1 Introduction . 9
2.2 mulgrid objects . 9
2.3 Other objects (node, column, layer, connection and well) . 47
2.4 Other functions: block name conversions . 52
2.5 Block mappings: handling other block naming conventions . 53

3 TOUGH2 grids 55
3.1 Introduction . 55
3.2 t2grid objects . 55
3.3 Other objects (rocktype, t2block and t2connection) . 67
3.4 Example . 70

4 TOUGH2 data files 71
4.1 Introduction . 71
4.2 t2data objects . 71
4.3 t2generator objects . 89
4.4 Example . 89

5 TOUGH2 initial conditions 91
5.1 Introduction . 91
5.2 t2incon objects . 91
5.3 t2blockincon objects . 96
5.4 Reading save files and converting to initial conditions . 96
5.5 Example . 97

6 TOUGH2 listing files 99
6.1 Introduction . 99
6.2 t2listing objects . 99
6.3 listingtable objects . 106
6.4 t2historyfile objects . 108
6.5 toughreact_tecplot objects . 109
6.6 Examples . 113

i

7 TOUGH2 thermodynamics 115
7.1 Introduction . 115
7.2 Thermodynamic functions . 115
7.3 Viscosity . 116
7.4 Saturation line: sat(t) and tsat(p) . 117
7.5 Other functions . 118
7.6 Example . 119

8 IAPWS-97 thermodynamics 121
8.1 Introduction . 121
8.2 Thermodynamic functions . 123
8.3 Viscosity: visc(d,t) . 124
8.4 Region boundaries . 124
8.5 Determining thermodynamic region . 125
8.6 Plotting functions . 126

9 MULgraph geometry file format 127
9.1 Introduction . 127
9.2 Grid structure . 127
9.3 Geometry types . 128
9.4 Naming conventions and atmosphere types . 128
9.5 File format . 129

10 Command reference 133

Index 135

ii

CHAPTER

ONE

INTRODUCTION

1.1 What is PyTOUGH?

PyTOUGH (Python TOUGH) is a set of Python software routines for making it easier to use the TOUGH2 geothermal
reservoir simulator. Using PyTOUGH, it is possible to automate the creation and editing of TOUGH2 model grids and
data files, and the analysis and display of model simulation results.

1.2 What are TOUGH2 and AUTOUGH2?

TOUGH2 is a general-purpose simulator for modelling subsurface fluid and heat flow, often used for simulating geother-
mal reservoirs.

AUTOUGH2 is the University of Auckland version of TOUGH2. The main differences between AUTOUGH2 and
TOUGH2 are:

• EOS handling: AUTOUGH2 includes all different equations of state (EOSes) in a single executable pro-
gram, whereas TOUGH2 uses different executables for each EOS. As a result, the main input data file for an
AUTOUGH2 simulation also includes extra data blocks to specify which EOS is to be used.

• Generator types: AUTOUGH2 includes a variety of extra generator types developed for geothermal reservoir
simulation (e.g. makeup and reinjection wells).

TOUGH2_MP is a multi-processor version of TOUGH2. TOUGH+ is a redeveloped version of TOUGH2, with a more
modular code structure implemented in Fortran-95. TOUGH3 is another parallelized redevelopment of TOUGH2.

1.2.1 TOUGH2 data files

TOUGH2 takes its main input from a data file, which contains information about the model grid, simulation parameters,
time stepping, sources of heat and mass etc. The data file formats for TOUGH2 and AUTOUGH2 are almost identical,
with minor differences. TOUGH2_MP can read TOUGH2 data files, but also supports some extensions (e.g. for 8-
character instead of 5-character block names) to this format. PyTOUGH does not currently support the TOUGH2_MP
extensions. TOUGH+ and TOUGH3 data files can also have some extensions, which PyTOUGH does not support as
yet.

Because TOUGH2 uses a finite volume formulation, the only model grid data it needs are the volumes of the grid
blocks and the distances and areas associated with the connections between blocks. Hence, the TOUGH2 data file
need not contain any information about the specific locations of the blocks in space, and it contains no information
about the locations of the vertices or edges of the blocks. This makes it easy to use TOUGH2 to simulate one-, two-
or three-dimensional models, all with the same format of data file. However, this lack of reference to any coordinate
system also makes it more difficult to generate model grids, and to visualise simulation results in space.

1

https://tough.lbl.gov/
https://www.geothermal.auckland.ac.nz/

PyTOUGH Documentation, Release 1.6.2

1.2.2 MULgraph geometry files

For this reason, a separate geometry file can be used to create grids for TOUGH2 simulations and visualise simulation
results. The geometry file contains information about the locations of the grid block vertices. The geometry file can be
used to visualise results using the TIM graphical interface for TOUGH2 and AUTOUGH, developed at the University
of Auckland. (This file format was originally designed for use with TIM’s predecessor, MULgraph).

The MULgraph geometry file assumes the grid has a layered structure, with blocks arranged in layers and columns,
and the same arrangement of columns on each layer. (At the top of the model grid, blocks in some columns may be
missing, to allow the grid to follow the surface topography.)

If you do not have a MULgraph geometry file for your model, it is easy to create one for a rectangular grid. In fact,
PyTOUGH is able to reverse-engineer a MULgraph geometry from a TOUGH2 data file containing a rectangular grid.

A specification of the MULgraph geometry file format can be found here.

1.2.3 TOUGH2 listing files

The output from TOUGH2 is written to a listing file, which is a text file containing tables of results for each time step
(or only selected time steps, if preferred). At each time step there is an ‘element table’, containing results for block
properties (e.g. pressure, temperature etc.). There may also be a ‘connection table’, containing results for flows between
blocks, and a ‘generation table’, containing results (e.g. flow rates) at the generators in the model (e.g. wells).

The formats of the listing files produced by TOUGH2, AUTOUGH2, TOUGH2_MP, TOUGH+ and TOUGH3 are all
slightly different, and also vary depending on the EOS used. However, PyTOUGH attempts to detect and read all of
these formats.

1.3 What is Python?

Python is a general-purpose programming language. It is free and open-source, and runs on many different computer
operating systems (Linux, Windows, Mac OS X and others). Python can be downloaded from the Python website, which
also contains detailed reference material about the Python language. If you are using Linux you probably already have
Python, as it is included in most Linux distributions.

PyTOUGH should run on any version of Python 2.x newer than 2.4 (though version 2.6 or newer is recommended).
PyTOUGH version 1.5 or later also runs on Python 3.x.

If you are unfamiliar with Python (even if you have used another programming language before), it is highly recom-
mended that you do one of the many Python tutorials available online, e.g.

• http://docs.python.org/tutorial/

• http://wiki.python.org/moin/BeginnersGuide

1.3.1 Python basics

Objects

Python is what is known as an object-oriented language, which means that it is possible to create special customised
data types, or ‘classes’, to encapsulate all the properties and behaviour of the things (objects) we are dealing with in a
program. This is a very useful way of simplifying complex programs. (In fact, in Python, everything is treated as an
object, even simple things like integers and strings.)

For example, in a TOUGH2 model grid we have collections of grid blocks, and we need to store the names of these
blocks and their volumes and rock types. In a non-object-oriented language, these could be stored in three separate

2 Chapter 1. Introduction

https://tim.readthedocs.io/
http://www.python.org
http://docs.python.org/tutorial/
http://wiki.python.org/moin/BeginnersGuide

PyTOUGH Documentation, Release 1.6.2

arrays: a string array for the names, a real (or ‘float’) array for the volumes and another string array for the rock types.
In an object-oriented language like Python, we can define a new data type (or ‘class’) for blocks, which holds the name,
volume and rock type of the block. If we declare an object called blk of this block class, we can access or edit its
volume by referring to blk.volume. In this way, we can store our blocks in one single array of block objects. When
we add or delete blocks from our grid, we can just add or delete block objects from the array, rather than having to keep
track of three separate arrays.

In general, an object not only has properties (like blk.volume) but also methods, which are functions the object
can carry out. For example, if we wanted to rotate a MULgraph geometry file by 30°, we could do this in PyTOUGH
by declaring a MULgraph geometry file object called geo, and calling its rotate method: geo.rotate(30). The
methods of an object are accessed in the same way that its properties are accessed: by adding a dot (.) after the object’s
name and then adding the name of the property or method. Any arguments of the method (e.g. the angle in the rotate
function above) are added in parentheses afterwards.

Lists, dictionaries, tuples and sets

Most programming languages have simple data types built in, e.g. float, double precision or integer numbers, strings,
and arrays of these. Python has some other data types which are very useful and are used a lot.

The first of these is the list. A list can contain any ordered collection of objects, of any type, or even of different types,
and is delimited by square brackets. So for example we can declare a list things = [1, 'two',3.0] containing
an integer, a string and a float. We can access the list’s elements in much the same way as we access the elements
of an array, for example things[1] would return the value 'two' (note that in Python, as in most other languages
besides Fortran, the indices of arrays and lists start at 0, not 1). Additional elements can be added to a list at any time,
without having to re-declare the size of the list: for example, things.append('IV') would add an extra element to
the end of the list, giving it the value [1, 'two', 3.0, 'IV']. It is also possible to remove elements from a list, e.g.
things.remove(3.0), which would give our list the value [1, 'two', 'IV'].

Another useful Python data type is the dictionary. Dictionaries are mainly used to store collections of objects (again,
of any type or of different types) that are referenced by name rather than by index (as in an array or list). A dictionary is
delimited by curly brackets. So for example we can declare a dictionary phone = {'Eric':8155, 'Fred':2350,
'Wilma':4667} and then find Fred’s phone number from phone['Fred'], which would return 2350. For TOUGH2
models, blocks, generators, rock types and other objects are often referred to by name rather than index, so dictionaries
are an appropriate way to store them.

A third Python data type, similar to a list, is the tuple. A tuple is essentially a list that cannot be changed, and is often
used just for grouping objects together. A tuple is delimited by parentheses. For example, things = (1, 'two',
3.0) declares a tuple with three elements. We can still refer to the elements of a tuple using e.g. a[1], but we cannot
assign new values to these elements or add or remove elements from the tuple once it has been declared.

Python also has a set data type, which represents a mathematical set - an unordered collection of objects. One of
the useful aspects of sets is that they cannot contain duplicate items. As a result, for example, duplicate items can be
removed from a list x simply by converting it to a set, and then back to a list: x = list(set(x)).

1.3.2 How to run Python

Python can be run either interactively or via scripts.

1.3. What is Python? 3

PyTOUGH Documentation, Release 1.6.2

Running Python interactively

The simplest way to run Python interactively is just by typing python (or possibly python3) at the command line. (On
Windows the directory that Python was installed into may have to be added to your PATH environment variable first.)
The command line then becomes an interactive Python environment in which you can type Python commands at the
Python command prompt >>>, e.g.:

bob@superbox:~$ python3
Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> things = [1, 'two', 3.0]
>>> print(things[1])
two
>>> exit()
bob@superbox:~$

In the interactive Python environment, you can view help on the properties and methods of any Python object by typing
help(objectname), where objectname is the name of an object that has been declared. This will list the properties
and methods of the object and a description of each one.

You can exit the interactive Python environment by typing exit() or Ctrl-Z on Windows, or Ctrl-D on Linux.

Python scripts

The real power of Python, however, lies in using it to write scripts to automate repetitive or complex tasks. You can just
type Python commands into a text file, save it with the file extension .py, and execute it by typing python filename.
py, where filename.py is the name of the file. (Once again, on Windows the directory that Python was installed into
may have to be added to your PATH environment variable first.)

You can also debug a Python script using the ‘pdb’ command-line debugger. Typing python -m pdb filename.py
will start debugging the script filename.py.

It is also possible to run a Python script from within the interactive Python environment. From the Python environment
command line, typing execfile('filename.py') will execute the script filename.py.

1.3.3 Python libraries

Python comes with a large number of features already built in, but for specialised tasks, additional libraries of Python
software can be imported into Python as you need them. PyTOUGH itself is a set of such libraries, and it in turn makes
use of some other third-party Python libraries. The most important of these are as follows:

Numerical Python (“NumPy”)

NumPy adds a special numpy.array class for fast multi-dimensional arrays, which PyTOUGH makes heavy use of,
and a whole range of other features, e.g. linear algebra routines, Fourier transforms and statistics.

4 Chapter 1. Introduction

https://numpy.org/

PyTOUGH Documentation, Release 1.6.2

Scientific Python (“SciPy”)

SciPy is a library of advanced mathematical functions (e.g. interpolation, calculus, optimisation), needed for some
PyTOUGH functionality.

Matplotlib

Matplotlib is a library of graphical plotting routines, which can be used for 2-D PyTOUGH visualization tools like
layer and slice plots.

Other libraries

Some parts of PyTOUGH use other Python libraries. You do not need to install these libraries unless you are using the
parts of PyTOUGH that depend on them. If you try to use parts of PyTOUGH that need these libraries, and you don’t
have them installed, it will tell you so.

Examples:

• VTK, a Python interface to the Visualization Tool Kit, a library for 3D visualisation of data via VTK itself, or
software such as ParaView, Mayavi etc.

• meshio, a library for 3D mesh handling – used for exporting PyTOUGH grids to other formats

Importing libraries

To use any Python library, you just need to import it first. For example, once you have installed Numerical Python,
you can make it available (in the interactive Python environment or in a Python script) by typing the command import
numpy, or alternatively from numpy import *. This imports all classes and commands from Numerical Python and
makes them available for use. (You can also import only parts of a library rather than the whole thing, e.g. from numpy
import linalg just imports the linear algebra routines from Numerical Python.)

When you import a library, you can also change its name. For example, PyTOUGH imports Numerical Python using
the command import numpy as np, which renames numpy as the abbreviated np. This means it can, for example,
access the Numerical Python numpy.array data type as np.array. It also means you have access to Numerical Python
as np in your own scripts and in the interactive Python environment, without having to import it yourself.

1.4 Installing PyTOUGH

From version 1.6.0, the easiest way to install PyTOUGH is via the pip Python package installer:

pip install PyTOUGH

or

python -m pip install PyTOUGH

either of which will install the latest version of PyTOUGH, together with its main dependency libraries (numpy, scipy
and matplotlib) if these are not already detected on your system.

You can also install a particular version of PyTOUGH, e.g. to install version 1.6.0:

pip install PyTOUGH==1.6.0

1.4. Installing PyTOUGH 5

http://www.scipy.org/
https://matplotlib.org/
http://www.vtk.org/
https://www.paraview.org/
http://docs.enthought.com/mayavi/mayavi/
https://pypi.org/project/meshio/

PyTOUGH Documentation, Release 1.6.2

or upgrade your existing version of PyTOUGH:

pip install --upgrade PyTOUGH

There are various ways of configuring the installation of packages with pip, which may be suitable for your particular
system – consult the pip documentation for details.

After installing, you should be able to import the PyTOUGH libraries into the Python interactive environment or your
Python scripts, from any directory on your computer. For example, you can import the MULgraph geometry library
using from mulgrids import * (see MULgraph geometry files).

To uninstall PyTOUGH:

pip uninstall PyTOUGH

1.4.1 Installing the testing branch

The PyTOUGH code exists in two main “branches”: the master branch, which contains the latest stable release, and
the testing branch, which includes the most recent changes being tested for inclusion in the next stable release.

If you need these most recent changes and can’t wait for the next stable release, it is possible to install the testing
branch of PyTOUGH using e.g.:

pip install git+https://github.com/acroucher/PyTOUGH.git@testing

1.5 Testing PyTOUGH

PyTOUGH includes a suite of “unit tests” which can be used to verify that it is working correctly. These are located
in the tests/ directory of the PyTOUGH repository, which includes a number of Python scripts for testing individual
PyTOUGH modules.

First you will the PyTOUGH repository on your machine. This is available here. Click the Code button which gives
various options for downloading the repository, via e.g. zip file or Git clone.

The unit test modules in the tests/ directory may be run individually, the same way as any other Python script would
be run. If the tests in the script all pass, the last message printed out to the console will read OK. If not, details will be
output regarding which tests did not pass.

It is also possible to run the unit tests for all modules by running the following command in the tests/ directory:

python -m unittest discover

or with the -v (verbose) flag to output more detail on which tests are being run:

python -m unittest discover -v

6 Chapter 1. Introduction

https://pip.pypa.io
https://github.com/acroucher/PyTOUGH

PyTOUGH Documentation, Release 1.6.2

1.6 Licensing

PyTOUGH is free software, distributed under the GNU Lesser General Public License (LGPL). More information is
available here.

1.6. Licensing 7

http://www.gnu.org/licenses/

PyTOUGH Documentation, Release 1.6.2

8 Chapter 1. Introduction

CHAPTER

TWO

MULGRAPH GEOMETRY FILES

2.1 Introduction

The mulgrids library in PyTOUGH contains classes and routines for creating, editing and saving MULgraph geometry
files. It can be imported using the command:

from mulgrids import *

2.2 mulgrid objects

The mulgrids library defines a mulgrid class, used for representing MULgraph geometry files.

Example:

geo = mulgrid()

creates an empty mulgrid object called geo.

geo = mulgrid('geom.dat')

creates a mulgrid object called geo and reads its contents from a file named 'geom.dat'.

Printing a mulgrid object (e.g. print(geo)) displays a summary of information about the grid: how many nodes,
columns, layers, blocks and wells it contains, as well as its naming convention and atmosphere type.

A specification of the MULgraph geometry file format can be found here.

2.2.1 Properties

The main properties of a mulgrid object are listed in the table below. Some of these properties are ‘header’ infor-
mation, corresponding to the data at the start of a MULgraph geometry file (type, convention, atmosphere_type,
atmosphere_volume, atmosphere_connection and unit_type).

The most important properties of a mulgrid object are node, column, connection, layer and well, which are
dictionaries of the grid nodes, columns, connections, layers and wells, accessed by name. For example, grid layer ‘AA’
of a mulgrid object geo can be accessed by geo.layer['AA']. (The nodelist, columnlist, connectionlist,
layerlist and welllist properties offer access to the nodes, columns, connections, layers and wells by index, which
is sometimes useful e.g. for looping over all columns in the grid.)

9

PyTOUGH Documentation, Release 1.6.2

Connections are slightly different from nodes, columns etc. in that they are not named individually. However, they can
be accessed by the names of the columns connected by the connection. For example, the connection between columns
‘10’ and ‘11’ in a mulgrid called geo is given by geo.connection[' 10',' 11'].

The elements of these lists and dictionaries are of type node, column, connection, layer and well respectively.
These are additional object classes to represent nodes, columns, connections, layers and wells, defined in the mulgrids
library (see Other objects).

Table 1: Properties of a mulgrid object

Property Type Description
area float total horizontal area covered by the grid
atmosphere_connection float connection distance to atmosphere blocks
atmosphere_type integer type of atmosphere
atmosphere_volume float volume of atmosphere blocks
bad_columns set columns that do not contain their own centres
bad_layers set layers that do not contain their own centres
block_connection_name_index dictionary indices of block connections (by name)
block_connection_name_list list names of block connections (by index)
block_name_index dictionary indices of blocks (by name)
block_name_list list names of blocks (by index)
block_order string block ordering scheme
boundary_columns set set of columns on the outer boundary of the grid
boundary_nodes list ordered list of nodes on the outer boundary of the grid
boundary_polygon list list of points representing grid boundary (extra colinear points removed)
bounds list [bottom left, top right] horizontal bounds of grid
centre np.array position of horizontal centre of the grid
columnlist list columns (by index, e.g. columnlist[23])
column_angle_ratio np.array angle ratio for each column
column_side_ratio np.array side ratio for each column
column dictionary columns (by name, e.g. column['AA'])
connectionlist list connections between columns (by index)
connection_angle_cosine np.array angle cosines for all connections
convention integer naming convention for columns and layers
default_surface Boolean True if all columns have default surface elevation
extra_connections set connections defined between columns that are not against each other
filename string file name on disk
gdcx, gdcy float cosines of angles x- and y-axes make with gravity vector
node_kdtree cKDTree tree structure for fast searching for nodes
layerlist list layers (by index)
layermesh layermesh mesh Layermesh library mesh object
layer dictionary layers (by name)
min_surface_block_thickness (float, string) thickness of thinnest surface block (and associated column name)
missing_connections set missing connections between columns
nodelist list nodes (by index)
node dictionary nodes (by name)
num_atmosphere_blocks integer number of atmosphere blocks
num_blocks integer total number of blocks in the grid
num_block_connections integer total number of block connections in the grid
num_columns integer number of columns
num_connections integer number of connections between columns
num_layers integer number of layers
num_nodes integer number of nodes

continues on next page

10 Chapter 2. MULgraph geometry files

PyTOUGH Documentation, Release 1.6.2

Table 1 – continued from previous page
Property Type Description
num_underground_blocks integer number of non-atmosphere blocks
num_wells integer number of wells
orphans set orphaned nodes (nodes not belonging to any column)
permeability_angle float rotation angle (degrees anticlockwise) of first horizontal permeability direction
read_function dictionary dictionary of functions used to read data from file
type string type of geometry (currently only ‘GENER’ supported)
unit_type string distance unit (blank for metres, ‘FEET’ for ft)
welllist list wells (by index)
well dictionary wells (by name)

Grid diagnostics

A mulgrid object has some properties (and methods) for evaluating its integrity. The property column_angle_ratio
returns an np.array of the ‘angle ratio’ for each column (the ratio of largest to smallest interior angles - see column
objects), a measure of skewness. The column_side_ratio returns an np.array of the ‘side ratio’ for each column
(the ratio of largest to smallest side length), a measure of elongation. These array properties can be plotted using the
layer_plot method (see mulgrid methods) for a graphical overview of grid quality.

There is also a connection_angle_cosine property, which returns an np.array of the angle cosine for each con-
nection (the cosine of the angle between a line joining the nodes in the connection and a line joining the centres of the
blocks in the connection). In general it is desirable for these lines to be as close to perpendicular as possible, making
the cosines close to zero.

The bad_columns, bad_layers, missing_connections, extra_connections and orphans properties return ac-
tual problems with the grid which should be fixed. A summary of all these problems is given by the check() method).

Blocks at the ground surface that have very small vertical thickness can sometimes cause problems. The
min_surface_block_thickness property gives a tuple containing the minimum surface block thickness and
the name of the column in which it occurs. Thin surface blocks of this type can be eliminated using the
snap_columns_to_layers() method.

Functions for reading data from file

A mulgrid object has a read_function property which controls how data are read from file. This property is a
dictionary with six keys: ‘d’, ‘f’, ‘e’, ‘g’, ‘s’ and ‘x’, denoting respectively integer, float, exponential, general, string and
blank. Each item in the dictionary is a function which converts a string from the file on disk into the appropriate value.
For example, read_function['f'] converts a string to a floating point value. By default, the built-in Python float
function is used for this (although it is modified slightly so that it returns None if the input string is blank). There is a
dictionary of default reading functions included in PyTOUGH, called default_read_function.

However, the user can specify other functions if needed. In particular, files produced from Fortran programs sometimes
have formatting that is not readable by the default functions, if some more exotic Fortran formatting options have been
used. For example, a ‘d’ can also be used to represent an exponent (like ‘e’), or spaces can be included within a
number, or the exponent identifier (e.g. ‘e’) can be omitted. PyTOUGH includes a second set of reading functions,
called fortran_read_function, for handling Fortran formatting. These are slightly slower than the default reading
functions.

The reading functions for a mulgrid object can be specified when the object is being created, e.g.:

geo = mulgrid('geom.dat', read_function = fortran_read_function)

2.2. mulgrid objects 11

PyTOUGH Documentation, Release 1.6.2

Block ordering schemes

By default, the blocks in a TOUGH2 grid created from a mulgrid geometry are ordered by layer, from the atmosphere
down to the bottom of the model, with the blocks within each layer ordered by column (following the ordering of the
columnlist property, which is the same as the column order specified in the geometry file).

It is also possible to sort the blocks according to their geometrical type (8-node hexahedrons and 6-node wedges,
corresponding to 4-node or 3-node columns respectively). This is useful for exporting the model to Waiwera, which
uses the PETSc DMPlex mesh representation, which sorts cells by cell type in this way.

This can be done by setting the block_order property of the geometry. This can be set when the mulgrid object is
created or read from file, as an optional parameter, e.g.:

geo = mulgrid('geom.dat', block_order = 'dmplex')

It can also be specified after creation. The block_order property is a string which can take the value ‘layer_column’
for layer/column block ordering, or ‘dmplex’ if the blocks are to be sorted by geometrical type. It can also take the
value None which gives the default layer/column ordering.

geo.block_order = 'layer_column'

The block ordering scheme can be stored in the MULgraph geometry file, via an integer flag in the header (see MUL-
graph geometry file format). This flag is an extension to the original MULgraph geometry file format. If a mulgrid
object is created by reading a file in which this flag is not present, its block_order property will be None, in which
case the default layer/column ordering will be used. When a geometry file is read in, and a block ordering is specified
via the block_order parameter, this will override any block ordering stored in the file.

Tilted geometries

Non-horizontal (i.e. tilted) geometries can be constructed by setting the mulgrid properties gdcx and gdcy non-zero.
These properties represent the cosines of the angles the x- and y-axes make with the gravity vector. By default they are
both zero, giving a horizontal grid. A geometry with gdcx = 1 can be used to construct a 2-D vertical slice grid with
a non-layered structure. When a t2grid object is created from a tilted geometry, e.g. using the t2grid fromgeo()
method, only the gravity cosines of the connections are affected (the dircos property of each connection).

Rotating permeability directions

It is possible to rotate the permeability principal directions of a mulgrid object with respect to the coordinate axes- for
example, to align permeabilities with a dominant fault direction- by specifying the permeability_angle property.
When a t2grid object is created, e.g. using the t2grid fromgeo() method, this can change the direction property
of each connection.

Conversion to and from Layermesh

A mulgrid geometry may be converted to a Layermesh mesh simply by accessing its layermesh property. Layermesh
is a dedicated library for general layer/column meshes. Its mesh objects have capabilities similar to those of a mulgrid
object, but it has advantages such as higher efficiency and a simpler interface. The Layermesh library must be installed
before this property can be used.

Example:

geo = mulgrid('gmymesh.dat')
m = geo.layermesh # m is a Layermesh mesh object

12 Chapter 2. MULgraph geometry files

https://github.com/acroucher/layermesh

PyTOUGH Documentation, Release 1.6.2

Conversely, a Layermesh object can be imported into a mulgrid object using the from_layermesh() method.

2.2.2 Methods

The main methods of a mulgrid object are listed in the following table. Details of these methods are given below.

Table 2: Methods of a mulgrid object

Method Type Description
add_column – adds a column to the grid
add_connection – adds a connection to the grid
add_layer – adds a layer to the grid
add_node – adds a node to the grid
add_well – adds a well to the grid
block_centre np.array block centre
block_contains_point Boolean whether a block contains a 3D point
block_mapping dictionary mapping from the blocks of another mulgrid object
block_name string name of block at given layer and column
block_name_containing_point string name of block containing specified point
block_surface float block top elevation
block_volume float block volume
check Boolean checks grid for errors (and optionally fixes them)
column_boundary_nodes list nodes around the outer boundary of a group of columns
column_bounds list bounding rectangle around a list of columns
column_containing_point column column containing specified horizontal point
column_mapping dictionary mapping from the columns of another object
column_name string column name of a block name
column_neighbour_groups list groups connected columns
column_quadtree quadtree quadtree structure for searching columns
column_surface_layer layer surface layer for a specified column
column_values tuple values of a variable down a column
columns_in_polygon list columns inside a specified polygon (or rectangle)
connects Boolean whether the grid has a connection between two specified columns
copy_layers_from – copies layer structure from another geometry
copy_wells_from – copies wells from another geometry
decompose_columns – decomposes columns into triangles and quadrilaterals
delete_column – deletes a column from the grid
delete_connection – deletes a connection from the grid
delete_layer – deletes a layer from the grid
delete_node – deletes a node from the grid
delete_orphans – deletes any orphaned nodes from the grid
delete_orphan_wells – deletes any orphaned wells from the grid
delete_well – deletes a well from the grid
empty – empties contents of grid
export_surfer – exports to various files on disk for visualization in Surfer
fit_columns np.array or dictionary fits scattered data to column centres
fit_surface – fits column surface elevations from data
from_amesh (mulgrid, dict) creates Voronoi geometry from AMESH grid
from_gmsh mulgrid creates geometry from a gmsh grid
from_layermesh mulgrid creates geometry from a Layermesh grid
layer_containing_elevation layer layer containing specified vertical elevation
layer_mapping dictionary mapping from the layers of another object

continues on next page

2.2. mulgrid objects 13

PyTOUGH Documentation, Release 1.6.2

Table 2 – continued from previous page
Method Type Description
layer_name string layer name of a block name
layer_plot – plots a variable over a layer of the grid
line_plot – plots a variable along an arbitrary line through the grid
line_values tuple values of a variable along an arbitrary line through the grid
meshio_grid tuple mesh in meshio format
minc_array array values for a particular level in a MINC grid
nodes_in_columns list nodes in a specified list of columns
nodes_in_polygon list nodes inside a specified polygon (or rectangle)
node_nearest_to node node nearest to a specified point
optimize – adjusts node positions to optimize grid quality
polyline_values tuple values of a variable along an arbitrary polyline through the grid
read mulgrid reads geometry file from disk
rectangular mulgrid creates rectangular grid
reduce – reduces a grid to contain only specified columns
refine – refines specified columns in the grid
refine_layers – refines specified layers in the grid
rename_column Boolean renames a column
rename_layer Boolean renames a layer
rotate – rotates a grid in the horizontal plane
slice_plot – plots a variable over a vertical slice through the grid
snap_columns_to_layers – snaps column surfaces to layer bottoms
snap_columns_to_nearest_layers – snaps column surfaces to nearest layer elevations
split_column Boolean splits a quadrilateral column into two triangles
translate – moves a grid by simple translation in 3D
well_values tuple values of a variable down a well
write – writes to geometry file on disk
write_bna – writes to Atlas BNA file on disk
write_exodusii – writes to ExodusII file on disk
write_mesh – writes to mesh file (various formats) on disk
write_vtk – writes to VTK file on disk

add_column(col)

Adds a column object col to the grid. If a column with the same name already exists, no new column is added.

add_connection(con)

Adds a connection object con to the grid. If a connection with the same name already exists, no new connection is
added.

14 Chapter 2. MULgraph geometry files

PyTOUGH Documentation, Release 1.6.2

add_layer(lay)

Adds a layer object lay to the grid. If a layer with the same name already exists, no new layer is added.

add_node(n)

Adds a node object n to the grid. If a node with the same name already exists, no new node is added.

add_well(w)

Adds a well object w to the grid. If a well with the same name already exists, no new well is added.

block_contains_point(blockname, pos)

Returns True if the grid block with the given name contains the 3D point pos.

Parameters:

• blockname: string
The name of the block.

• pos: np.array
3-element array representing the 3D point.

block_centre(lay, col)

Returns the centre of the block corresponding to the given layer and column.

The horizontal centre is given by the column centre. The vertical centre is given by the layer centre, except for surface
blocks with column surface lower than the layer top, in which case it is the midpoint between the column surface and
the layer bottom. (For surface blocks with column surface higher than the layer top, the vertical centre is still the layer
centre, to give a uniform pressure reference.)

Parameters:

• lay: layer or string
The specified layer or layer name.

• col: column or string
The specified column or column name.

2.2. mulgrid objects 15

PyTOUGH Documentation, Release 1.6.2

block_mapping(geo, column_mapping=False)

Returns a dictionary mapping each block name in the mulgrid object geo to the name of the nearest block in the
object’s own geometry. Can optionally also return the associated column mapping.

Parameters:

• geo: mulgrid
The mulgrid object to create a block mapping from.

• column_mapping: Boolean
If True, the column mapping will also be returned (i.e. the function will return a tuple containing the block
mapping and the column mapping). Default value is False.

block_name(layer_name, column_name, blockmap = {})

Gives the name of the block corresponding to the specified layer and column names, according to the naming convention
of the grid.

An optional block name mapping can be applied.

Parameters:

• layer_name, column_name: string
Name of layer and column (the widths of these strings are determined by the grid’s naming convention).

• blockmap: dictionary
Dictionary mapping the block names in the geometry to another block naming system. This dictionary need not
contain entries for all blocks in the geometry- those not included in the mapping will not be altered.

block_name_containing_point(pos, qtree=None, blockmap={})

Gives the name of the block containing a specified 3-D position in the grid (returns None if the point lies outside the
grid).

Parameters:

• pos: np.array
Position of point in 3-D

• qtree: quadtree
Quadtree object for fast searching of grid columns (can be constructed using the column_quadtree() method).

• blockmap: dictionary
Dictionary mapping the block names in the geometry to another block naming system.

16 Chapter 2. MULgraph geometry files

PyTOUGH Documentation, Release 1.6.2

block_surface(lay, col)

Returns the elevation of the top surface of the block corresponding to the given layer and column.

Parameters:

• lay: layer
The specified layer.

• col: column
The specified column.

block_volume(lay, col)

Returns the volume of the block corresponding to the given layer and column.

Parameters:

• lay: layer
The specified layer.

• col: column
The specified column.

check(fix=False,silent=False)

Checks a grid for errors and optionally fixes them. Errors checked for are: missing connections, extra connections,
orphaned nodes, and columns and layers that do not contain their own centres. Returns True if no errors were found,
and False otherwise. If fix is True, any identified problems will be fixed. If silent is True, there is no printout
(only really useful if fix is True).

Parameters:

• fix: Boolean
Whether to fix any problems identified.

• silent: Boolean
Whether to print out feedback or not.

column_boundary_nodes(columns)

Returns the nodes around the outer boundary of a list of columns. The list is ordered, in a counter-clockwise direction.

Parameters:

• columns: list
The list of columns for which the boundary is required.

2.2. mulgrid objects 17

PyTOUGH Documentation, Release 1.6.2

column_bounds(columns)

Returns a bounding rectangle around a list of columns.

Parameters:

• columns: list
The list of columns for which the bounds are required.

column_containing_point(pos, columns=None, guess=None, bounds=None, qtree=None)

Returns the grid column containing the specified horizontal point. If columns is specified, only columns in the given
list will be searched. An initial guess column can optionally be specified. If bounds is specified, points outside the
given polygon will always return None. A quadtree structure can also be specified to speed up searching.

Parameters:

• pos: np.array
Horizontal position (x, y)

• columns: list of column (or None)
List of columns to search. If None, the entire grid will be searched.

• guess: column (or None)
Guess of required column. If specified, this column will be tested first, followed (if necessary) by its
neighbours; only if none of these contain the point will the remaining columns be searched. This can speed up
the process if data follow a sequential pattern in space, e.g. a grid or lines.

• bounds: list of np.array (or None)
Polygon or rectangle representing e.g. the boundary of the grid: points outside this polygon will always return
None. If the polygon has only two points, it will be interpreted as a rectangle [bottom left, top right].

• qtree: quadtree
A quadtree object for searching the columns of the grid. If many points are to be located, this option can speed
up the search. The quadtree can be constructed before searching using the column_quadtree() method.

column_mapping(geo)

Returns a dictionary mapping each column name in the mulgrid object geo to the name of the nearest column in the
object’s own geometry. If the SciPy library is available, a KDTree structure is used to speed searching.

Parameters:

• geo: mulgrid
The mulgrid object to create a column mapping from.

18 Chapter 2. MULgraph geometry files

PyTOUGH Documentation, Release 1.6.2

column_name(block_name)

Gives the name of the column corresponding to the specified block name, according to the naming convention of the
grid.

Parameters:

• block_name: string
Block name.

column_neighbour_groups(columns)

From the given list or set of columns, finds sets of columns that are connected together, and returns a list of them.

Parameters:

• columns: list or set
List or set of columns to group.

column_quadtree(columns=None)

Returns a quadtree structure for fast searching of grid columns, to find which column a given point lies in. This can
then be passed into various other mulgrid methods that do such searching, e.g. block_name_containing_point() or
well_values(), to speed them up (useful for large grids).

The quadtree is an instance of a quadtree class, defined in the mulgrids module.

Parameters:

• columns: list (or None)
A list of columns in the grid, specifying the search area. This parameter can be used to further speed searching
if it is only necessary to search columns in a defined area. If None, the search area is the whole grid (all
columns).

column_surface_layer(col)

Returns the layer containing the surface elevation of a specified column.

Parameters:

• col: column
The column for which the surface layer is to be found.

2.2. mulgrid objects 19

PyTOUGH Documentation, Release 1.6.2

column_values(col, variable, depth = False)

Returns values of a specified variable down a specified column. The variable can be a list or np.array containing a
value for every block in the grid.

The routine returns a tuple of two arrays (d,v), the first (d) containing the elevation (or depth from surface if the depth
parameter is set to True), and the second (v) containing the value of the variable at each block in the column.

Parameters:

• col: column or string
The column for which values are to be found.

• variable: list (or np.array)
Values of variable, of length equal to the number of blocks in the grid.

• depth: Boolean
Set to True to give depths from surface, instead of elevations, as the first returned array.

columns_in_polygon(polygon)

Returns a list of all columns with centres inside the specified polygon or rectangle.

Parameters:

• polygon: list (of np.array)
List of points defining the polygon (each point is a two-element np.array). If the list has only two points, it
will be interpreted as a rectangle [bottom left, top right].

connects(column1, column2)

Returns True if the geometry contains a connection connecting the two specified columns.

Parameters:

• column1, column2: column
Two columns in the geometry.

copy_layers_from(geo)

Copies the layer structure from the geometry geo (deleting any existing layers first).

Parameters:

• geo: mulgrid
The geometry to copy layers from.

20 Chapter 2. MULgraph geometry files

PyTOUGH Documentation, Release 1.6.2

copy_wells_from(geo)

Copies the wells from the geometry geo (deleting any existing wells first).

Parameters:

• geo: mulgrid
The geometry to copy wells from.

decompose_columns(columns = [], mapping = False, chars = ascii_lowercase)

Decomposes columns with more than four sides into triangular and quadrilateral columns. This can be useful when
carrying out calculations on the geometry that rely on finite element methods (e.g. the fit_columns() method uses
it).

In general, columns are decomposed by adding a node at the column centroid and forming triangles around it. However,
there are special cases for columns with lower numbers of sides (less than 9) and ‘straight’ nodes, i.e. nodes on a straight
line between their neighbouring nodes in the column). These make use of simpler decompositions.

Parameters:

• columns: list
List of columns to be decomposed. If the list is empty (the default), all columns are decomposed.

• mapping: Boolean
If True, return a dictionary mapping each original column name to a list of decomposed columns that replace it.

• chars: string
Specifies a string of characters to use when forming new node and column names. Default is lowercase letters.

delete_column(colname)

Deletes the column with the specified name from the grid.

Parameters:

• colname: string
Name of the column to be deleted.

delete_connection(colnames)

Deletes the connection between the specified columns from the grid.

Parameters:

• colnames: tuple of string
Tuple of two column names.

2.2. mulgrid objects 21

PyTOUGH Documentation, Release 1.6.2

delete_layer(layername)

Deletes the layer with the specified name from the grid.

Parameters:

• layername: string
Name of the layer to be deleted.

delete_node(nodename)

Deletes the node with the specified name from the grid.

Parameters:

• nodename: string
Name of the node to be deleted.

delete_orphans()

Deletes any orphaned nodes (those not belonging to any column) from the grid.

delete_orphan_wells()

Deletes any orphaned wells (those with wellheads outside the grid).

delete_well(wellname)

Deletes the well with the specified name from the grid.

Parameters:

• layername: string
Name of the layer to be deleted.

empty()

Empties the grid of all its nodes, columns, layers, wells and connections. Other properties are unaffected.

22 Chapter 2. MULgraph geometry files

PyTOUGH Documentation, Release 1.6.2

export_surfer(filename='', aspect=8.0, left=0.0)

Exports the grid to files on disk useful for visualization in Surfer. Six files are written out:

• an Atlas BNA file (filename.bna) representing the grid columns

• a CSV file (filename_column_names.csv) containing the column names

• a Golden Software blanking file (filename_layers.bln) file representing the grid layers

• a CSV file (filename_layer_bottom_elevations.csv) containing the bottom elevations of the layers

• a CSV file (filename_layer_centres.csv) containing the elevations of the centres of the layers

• a CSV file (filename_layer_names.csv) containing the names of the layers

Parameters:

• filename: string
Base name for the exported files. If it is not specified, the filename property of the mulgrid object itself is
used (unless this is also blank, in which case a default name is used), with its extension removed.

• aspect: float
Aspect ratio for the layer plot, so that the width is the total height of the grid divided by aspect (default 8.0).

• left: float
Coordinate value of the left hand side of the layer plot (default zero).

fit_columns(data, alpha=0.1, beta=0.1, columns=[], min_columns=[], grid_boundary=False,
silent=False, output_dict=False)

Fits scattered data to column centres, using bilinear least-squares finite element fitting with Sobolev smoothing.
Smoothing is useful when data density is low in some areas of the grid, in which case least-squares fitting without
smoothing can fail (e.g. if there are any columns which do not contain any data points).

By default, this method returns an np.array with length given by the number of columns to be fitted. Each value in
the array represents the fitted data value at the centre of the corresponding column. If the output_dict parameter is
set to True, a dictionary is returned, with fitted values indexed by column names.

Parameters:

• data: np.array
Two-dimensional array of data to fit. Each row of the array should contain the x,y co-ordinates for each data
point, followed by the corresponding data value. Such an array can be conveniently read from a text file using
the np.loadtxt() method.

• alpha: float
Smoothing parameter for first derivatives - increasing its value results in solutions with lower gradients (but
may result in extrema being smoothed out).

• beta: float
Smoothing parameter for second derivatives - increasing its value results in solutions with lower curvature.

• columns: list of string or column
Columns, or names of columns to be fitted. If empty (the default), then all columns will be fitted.

• min_columns: list of string or column
Columns, or names of columns for which fitted data will be determined from the minimum of the fitted nodal
values (fitted values at all other columns are determined from the average of the fitted nodal values).

2.2. mulgrid objects 23

PyTOUGH Documentation, Release 1.6.2

• grid_boundary: Boolean
If True, test each data point first to see if it lies inside the boundary polygon of the grid. This can speed up the
fitting process if there are many data points outside the grid, and the grid has a simple boundary (e.g. a
rectangle). In general if there are many data points outside the grid, it is best to clip the data set before fitting,
particularly if it is to be used more than once.

• silent: Boolean
Set to True to suppress printing fitting progress.

• output_dict: Boolean
Set True to return results as a dictionary of fitted values indexed by column names, instead of an array.

fit_surface(data, alpha=0.1, beta=0.1, columns=[], min_columns=[], grid_boundary=False,
layer_snap=0.0, silent=False)

Fits column surface elevations from data, using bilinear least-squares finite element fitting with Sobolev smoothing
(using the fit_columns() method). Smoothing is useful when data density is low in some areas of the grid, in which
case least-squares fitting without smoothing can fail (e.g. if there are any columns which do not contain any data
points). Use the layer_snap parameter to eliminate surface blocks with very small thickness.

Parameters:

• data: np.array
Two-dimensional array of data to fit. Each row of the array should contain the x,y,z values for each data point.
Such an array can be conveniently read from a text file using the np.loadtxt() method.

• alpha: float
Smoothing parameter for first derivatives - increasing its value results in solutions with lower gradients (but
may result in extrema being smoothed out).

• beta: float
Smoothing parameter for second derivatives - increasing its value results in solutions with lower curvature.

• columns: list of string or column
Columns, or names of columns to be fitted. If empty (the default), then all columns will be fitted.

• min_columns: list of string or column
Columns, or names of columns for which elevations will be determined from the minimum of the fitted nodal
elevations (elevations at all other columns are determined from the average of the fitted nodal elevations).

• grid_boundary: Boolean
If True, test each data point first to see if it lies inside the boundary polygon of the grid. This can speed up the
fitting process if there are many data points outside the grid, and the grid has a simple boundary (e.g. a
rectangle). In general if there are many data points outside the grid, it is best to clip the data set before fitting,
particularly if it is to be used more than once.

• layer_snap: float
Smallest desired surface block thickness. Set to a positive value to prevent columns being assigned surface
elevations that are very close to the bottom of a layer (resulting in very thin surface blocks). Default value is
zero (i.e. no layer snapping).

• silent: Boolean
Set to True to suppress printing fitting progress.

24 Chapter 2. MULgraph geometry files

PyTOUGH Documentation, Release 1.6.2

from_amesh(input_filename='in', segment_filename='segmt', convention=0,
node_tolerance=None, justify='r', chars=ascii_lowercase, spaces=True, block_order=None)

Returns a mulgrid object (and a block mapping dictionary) from a Voronoi mesh previously created by the AMESH
utility, or by other software that uses AMESH (e.g. WinGridder or Steinar).

The block naming convention for the output mulgrid object can be specified via the convention parameter. Note
that in general this may not be the same as the block naming convention of the original mesh created by AMESH.
In fact, AMESH can create meshes with block naming conventions that do not correspond to any of the MULgraph
conventions. This is why the from_amesh()method also returns a block mapping dictionary, which maps block names
in the mulgrid geometry to the block names in the original AMESH grid.

The optional justify and case parameters control the formatting of the character part of the block names. Addition-
ally, the characters used to form node/column or layer names can be specified using the chars parameter. (This can be
useful for example for grids with large numbers of nodes and/or columns, for which lowercase letters alone may not be
enough.)

The from_amesh() method assumes the original AMESH grid has layers of constant thickness (i.e. all blocks in each
layer of the AMESH input file have the same specified thickness). Grids with layers of non-constant thickness cannot
be represented by a mulgrid object and will cause an exception to be raised.

Parameters:

• input_filename: string
Filename for AMESH input file. Default is ‘in’.

• segment_filename: string
Filename for AMESH output segment file. Default is ‘segmt’.

• convention: integer
Naming convention for grid columns and layers.

• node_tolerance: float or None
Horizontal tolerance for identifying distinct nodes in the segment file. If a node is read in with horizontal
distance from an existing node less than the tolerance, then the two nodes are assumed to be identical. If None
(the default), then the tolerance is set to 90% of the smallest segment length. If errors are encountered in
identifying nodes belonging to the grid columns, it may be worth adjusting this parameter.

• justify: string
Specify ‘r’ for the character part of the block names (first three characters) to be right-justified, ‘l’ for
left-justified.

• chars: string
Specify a string of characters to be used to form the character part of block names. For example, to use both
lowercase and uppercase characters, set chars to ascii_lowercase + ascii_uppercase, or to use
uppercase letters only, specify ascii_uppercase.

• spaces: Boolean
Specify False to disallow spaces in character part of block names. In this case, the first element of the chars
parameter functions like a ‘zero’ and replaces spaces.

• block_order: string or None
Specify None or ‘layer_column’ for default block ordering by layer and column, starting from the atmosphere.
Specify ‘dmplex’ to order blocks by geometrical type (8-node hexahedrons first followed by 6-node wedges) as
in PETSc DMPlex meshes.

2.2. mulgrid objects 25

https://tough.lbl.gov/licensing-download/free-software-download/

PyTOUGH Documentation, Release 1.6.2

from_gmsh(filename, layers, convention=0, atmosphere_type=2, top_elevation=0, justify =
'r', chars = ascii_lowercase, spaces=True, block_order=None)

Imports a 2-D Gmsh mesh into a geometry object. The horizontal structure of the geometry object is created from the
Gmsh mesh, while the layer structure is specified via the layers parameter, a list of layer thicknesses. The elevation
of the top surface can also be specified, as well as the naming convention and atmosphere type.

Parameters:

• filename: string
Name of the Gmsh mesh file.

• layers: list
List of floats containing the desired layer thicknesses.

• convention: integer
Naming convention for grid columns and layers.

• atmosphere_type: integer
Type of atmosphere.

• top_elevation: float
Elevation of the top surface of the model (default is zero).

• justify: string
Specify ‘r’ for the character part of the block names (first three characters) to be right-justified, ‘l’ for
left-justified.

• chars: string
Specifies a string of characters to use when forming the character part of block names. Default is lowercase
letters.

• spaces: Boolean
Specify False to disallow spaces in character part of block names. In this case, the first element of the chars
parameter functions like a ‘zero’ and replaces spaces.

• block_order: string or None
Specify None or ‘layer_column’ for default block ordering by layer and column, starting from the atmosphere.
Specify ‘dmplex’ to order blocks by geometrical type (8-node hexahedrons first followed by 6-node wedges) as
in PETSc DMPlex meshes.

from_layermesh(mesh, convention=0, atmosphere_type=2, justify='r',
chars=ascii_lowercase, spaces=True, block_order=None)

Imports a Layermesh object into a geometry object.

Parameters:

• mesh: layermesh
Layermesh object to import.

• convention: integer
Naming convention for grid columns and layers.

• atmosphere_type: integer
Type of atmosphere.

26 Chapter 2. MULgraph geometry files

http://geuz.org/gmsh/
https://github.com/acroucher/layermesh

PyTOUGH Documentation, Release 1.6.2

• justify: string
Specify ‘r’ for the character part of the block names (first three characters) to be right-justified, ‘l’ for
left-justified.

• chars: string
Specifies a string of characters to use when forming the character part of block names. Default is lowercase
letters.

• spaces: Boolean
Specify False to disallow spaces in character part of block names. In this case, the first element of the chars
parameter functions like a ‘zero’ and replaces spaces.

• block_order: string or None
Specify None or ‘layer_column’ for default block ordering by layer and column, starting from the atmosphere.
Specify ‘dmplex’ to order blocks by geometrical type (8-node hexahedrons first followed by 6-node wedges) as
in PETSc DMPlex meshes.

layer_containing_elevation(elevation)

Returns the grid layer containing the specified vertical elevation.

Parameters:

• elevation: float
Vertical elevation.

layer_mapping(geo)

Returns a dictionary mapping each layer name in the mulgrid object geo to the name of the nearest layer in the object’s
own geometry. (Note: this mapping takes no account of the grid surface, which may alter which layer is nearest in a
given column.)

Parameters:

• geo: mulgrid
The mulgrid object to create a layer mapping from.

layer_name(block_name)

Gives the name of the layer corresponding to the specified block name, according to the naming convention of the grid.

Parameters:

• block_name: string
Block name.

2.2. mulgrid objects 27

PyTOUGH Documentation, Release 1.6.2

layer_plot(layer, variable=None, variable_name=None, unit=None, column_names=None,
node_names=None, column_centres=None, nodes=None, colourmap=None, linewidth=0.
2, linecolour='black', aspect='equal', plt=None, subplot=111, title=None,
xlabel='x (m)', ylabel='y (m)', contours=False, contour_label_format='%3.0f',
contour_grid_divisions=(100,100), connections=None, colourbar_limits=None,
plot_limits=None, wells=None, well_names=True, hide_wells_outside=True,
wellcolour='blue', welllinewidth=1.0, wellname_bottom=True, rocktypes=None,
allrocks=False, rockgroup=None, flow=None, grid=None, flux_matrix=None,
flow_variable_name=None, flow_unit=None, flow_scale=None, flow_scale_pos=(0.5, 0.02),
flow_arrow_width=None, connection_flows=False, blockmap = {}, block_names=None)

Plots a variable over a layer of the grid, using the matplotlib plotting library. The required layer can be specified
by name or as an elevation (in which case the routine will find the corresponding layer). Specifying the layer as None
gives a plot over the ground surface of the geometry (i.e. the surface layer for each column).

The variable can be a list or np.array containing a value for every block (or column) in the grid, in the order given
by the block_name_list property of the geometry. If no variable is specified, only the grid in the layer is plotted,
without shading. If the variable contains a value for each column in the grid, these values are extended down each
column to fill the entire grid.

The name and units of the variable can optionally be specified, and the names of the columns and nodes can also
optionally be displayed on the plot, as well as the column centres (represented by crosses). The colour map and limits
of the variable shading, the line width of the grid columns and the aspect ratio of the plot can also be set, as can the
title and x- and y-axis labels, and the plot limits.

When a variable is plotted over the grid, contours at specified levels can also be drawn, and optionally labelled with
their values.

Well tracks can also optionally be plotted. Each well is drawn as a line following the well track, with the well name
at the bottom (or optionally the top) of the well. For surface plots (layer = None), wells are drawn with solid lines;
otherwise, wells are drawn with dotted lines except where they pass through the specified layer, where they are drawn
with solid lines.

Rock types can be shown on the layer plot by specifying a t2grid object as the rocktypes parameter. It is possible
to group similar rock types (e.g. those in the same geological formation but with slightly different permeabilities) to
simplify the plot if there are a lot of rock types.

Flows can be shown on the layer by specifying an array of connection flow values (e.g mass flow) as the flow parameter.
Flows will then be drawn on the slice by arrows at the block centres, each representing the average flux (flow per unit
area) over the block, projected onto the layer. (For example, connection values of mass flow in kg/s will be represented
as block-average mass fluxes in kg/𝑚2/s.) Alternatively, flows through the connection faces can be plotted by setting
the connection_flows parameter to True.

Parameters:

• layer: layer, string, integer, float or None
Layer or name (string) of layer to plot, or elevation (float or integer). Specifying None gives a surface plot.

• variable: list (or np.array)
Variable to be plotted, of length equal to the number of blocks or columns in the grid (or None just to plot the
grid).

• variable_name: string
Name of the variable (as it will appear on the scale of the plot).

• unit: string
Units of the variable (as it will appear on the scale of the plot).

• column_names: Boolean or list

28 Chapter 2. MULgraph geometry files

PyTOUGH Documentation, Release 1.6.2

Set to True if column names are to be indicated on the plot, or to a list of names of columns to be named.

• node_names: Boolean or list
Set to True if node names are to be indicated on the plot, or to a list of names of nodes to be named.

• column_centres: Boolean or list
Set to True if column centres are to be indicated on the plot (as crosses), or to a list of names of columns to be
indicated.

• nodes: Boolean or list
Set to True if nodes are to be indicated on the plot (as crosses), or to a list of names of nodes to be indicated.

• colourmap: string
Name of matplotlib colour map to use for shading the variable.

• linewidth: float
Line width to use for drawing the grid.

• linecolour: string
Line colour to use for drawing the grid.

• aspect: string
Aspect ratio to use for drawing the grid (default is ‘equal’ (i.e. 1:1).

• plt: matplotlib.pyplot instance
An instance of the matplotlib.pyplot library, imported in the calling script using e.g. import
matplotlib.pyplot as plt.

• subplot: integer
Subplot number for multi-plots, e.g. set 223 to draw the third plot in a 2-by-2 multiplot (default is 111).

• title: string
Plot title. If set to None (the default value), a title will be constructed from the other plot parameters. Set to for
no title.

• xlabel: string
x axis label (default is ‘x (m)’).

• ylabel: string
y axis label (default is ‘y (m)’).

• contours: Boolean, list or np.array
Set to True or to a list or array of contour values to draw contours on the plot (default False).

• contour_label_format: string
Format string for contour labels (default ‘%3.0f’).

• contour_grid_divisions: tuple (of integer)
Number of divisions in the x- and y-directions in the regular grid superimposed on the model grid, and used to
produce the contours (default (100,100)).

• connections: float (or None)
Set non-zero to plot connections in the grid, shaded by absolute value of the connection angle cosine. The
value specifies the lower cut-off value, above which connections will be plotted. Connections are shaded in
greyscale from white (0.0) to black (1.0). This can be used to check orthogonality of grid connections, as less
orthogonal connections (with larger angle cosine) will show up darker on the plot. If set to None, no
connections will be plotted.

• colourbar_limits: tuple, list, np.array (or None)

2.2. mulgrid objects 29

PyTOUGH Documentation, Release 1.6.2

Specify a two-element tuple, list or np.array to set the limits of the colour scale. Default (None) will
auto-scale.

• plot_limits: tuple or list (or None)
Specify a two-element tuple (or list) of plot axis ranges, each itself being a tuple (or list) of minimum and
maximum values, i.e. ((xmin,xmax),(ymin,ymax)). Default is False which will auto-scale.

• wells: Boolean or list (or None)
Specify True to plot all well tracks, False or None not to plot them, or a list of wells or well names to specify
only particular wells.

• well_names: Boolean or list (or None)
Specify True to label each well with its name , False or None not to label them, or a list of wells or well
names to label only particular wells.

• hide_wells_outside: Boolean
Set to True if wells that do not intersect the specified layer are to be hidden.

• wellcolour: string
Colour to use for drawing the wells.

• welllinewidth: float
Line width for drawing the wells.

• wellname_bottom: Boolean
Set to False to label wells at the wellhead rather than the bottom.

• rocktypes: t2grid (or None)
To plot rock types, specify a t2grid object containing rock types for the grid. If None, no rock types will be
plotted.

• allrocks: Boolean
If False (the default), only rock types present on the specified layer will be shown in the colour bar; others will
be omitted. If True, all rocks present in the model grid will be shown on the colour bar, regardless of whether
they appear in the specified layer.

• rockgroup: tuple, list, string (or None)
To group similar rock types into one colour, specify a tuple or list of integers, representing the significant
characters of the rock type names. For example, to group rock types having the same first two characters,
specify (0,1). Alternatively, specify a 5-character string mask containing asterisks in positions that are not
significant, and any other characters in the significant positions (e.g. ‘++***’).

• flow: np.array (or None)
To plot flows, specify an array of connection flow values (one floating point value for each connection in the
grid). These may for example be extracted from the columns of the connection table in a t2listing object.

• grid: t2grid (or None)
Specify a t2grid object associated with the grid, to be used to calculate the ‘flux matrix’ which converts the
connection flow values to block-average fluxes. If this is not specified (and neither is the flux_matrix
parameter), then a t2grid object will be created internally.

• flux_matrix: scipy.sparse.lil_matrix (or None)
A sparse matrix used to convert the connection flow values to block-average fluxes. Such a matrix can be
created using the flux_matrix() method of a t2grid object and an appropriate mulgrid object. If no flux
matrix is specified, one will be created internally. This can be time-consuming for large grids, so for multiple
flow plots it is faster to pre-calculate a flux matrix in your script and pass it via this parameter. If this parameter
is specified, there is no need also to specify the grid parameter.

• flow_variable_name: string (or None)

30 Chapter 2. MULgraph geometry files

PyTOUGH Documentation, Release 1.6.2

Name of the flow variable (as it will appear on the scale of the plot).

• flow_unit: string (or None)
Units of the flow variable (as it will appear on the scale of the plot, divided by area).

• flow_scale: string (or None)
Length of flow scale arrow. If not specified, this will be calculated.

• flow_scale_pos: tuple
Position of the flow scale on the plot, in units of dimensionless plot size. The default (0.5, 0.02) draws the flow
scale in the horizontal centre of the plot, slightly above the bottom axis. If you want the flow scale below the
bottom axis (so it doesn’t get mixed up with the actual flow arrows), specify this parameter with a small
negative second component, e.g. (0.8, -0.1).

• flow_arrow_width: float (or None)
Width of the flow arrows, in units of dimensionless plot width. If not specified, this will be calculated internally.

• connection_flows: Boolean
Set to True to plot flows through connection faces, rather than block-averaged fluxes. In this case, usually the
grid parameter should also be specified (but not flux_matrix), otherwise a grid will be calculated internally.

• blockmap: dictionary
Dictionary mapping the block names in the geometry to another block naming system. This has an effect only
on the block names displayed on the plot via the block_names parameter, and on the rock types displayed.
Note that if a mapping is used, then the block_names list should contain mapped block names.

• block_names: Boolean or list
Set to True if block names are to be indicated on the plot, or to a list of names of blocks to be named.

Example:

geo.layer_plot(-500., t, 'Temperature', '\degreeC', contours = np.arange(100,200,25))

plots the variable t at elevation -500 m over the grid, with the values as Temperature (°C), and with contours drawn
from 100°C to 200°C with a contour interval of 25°C.

line_plot(start=None, end=None, variable, variable_name=None, unit=None, divisions=100,
plt=None, subplot=111, title='', xlabel='distance (m)', coordinate=False)

Plots a variable along a line through the grid, using the matplotlib plotting library. The line is specified by its start
and end points in 3D. The variable can be a list or np.array containing a value for every block (or column) in the
grid. If the variable contains a value for each column in the grid, these values are extended down each column to fill
the entire grid. The name and units of the variable can optionally be specified, as well as the number of divisions the
line is divided into (default 100), the plot title and the axis labels.

Parameters:

• start, end: list, tuple or np.array
Start and end point of the line, each of length 3 (None to plot across the bounds of the grid).

• variable: list (or np.array)
Variable to be plotted, of length equal to the number of blocks (or columns) in the grid.

• variable_name: string
Name of the variable (as it will appear on the scale of the plot).

• unit: string

2.2. mulgrid objects 31

PyTOUGH Documentation, Release 1.6.2

Units of the variable (as it will appear on the scale of the plot).

• divisions: integer
Number of divisions to divide the line into (default 100).

• plt: matplotlib.pyplot instance
An instance of the matplotlib.pyplot library, imported in the calling script using e.g. import
matplotlib.pyplot as plt.

• subplot: integer
Subplot number for multi-plots, e.g. set 223 to draw the third plot in a 2-by-2 multiplot (default is 111).

• title: string
Plot title. If set to None (the default value), a title will be constructed from the other plot parameters. Set to for
no title.

• xlabel: string
x axis label (default is ‘distance (m)’).

• coordinate: integer or Boolean
If False, plot against distance along the line, otherwise plot against specified coordinate (0,1 or 2) values.

Example:

geo.line_plot([0.,0.,500.], [1000.,0.,500.], t, 'Temperature', '\degreeC')

plots the variable t along a line from (0,0,500) to (1000,0,500) through the grid, with the values as Temperature (°C).

line_values(start, end, variable, divisions=100, coordinate=False, qtree=None)

Returns values of a specified variable along an arbitrary line through the grid. The start and end points of the line
(start and end) are 3-element lists, tuples or np.arrays specifying points in 3D. The variable can be a list or np.
array containing a value for every block in the grid. The number of divisions along the line (default 100) can be
optionally specified.

The routine returns a tuple of two arrays (l,v), the first (l) containing the distance from the start (or the appropriate
coordinate (0,1, or 2) if coordinate is specified) for each point along the line, and the second (v) containing the value
of the variable at that point. The value of the variable at any point is the (block average) value at the block containing
the point.

Parameters:

• start, end: list, tuple or np.array (of length 3)
Start and end points of the line in 3D.

• variable: list (or np.array)
Variable to be plotted, of length equal to the number of blocks in the grid.

• divisions: integer
Number of segments the line is divided up into (default 100).

• coordinate: integer or Boolean
If False, return distance along the line in first array, otherwise return specified coordinate (0,1 or 2) values.

• qtree: quadtree
Quadtree object for fast searching of grid columns (can be constructed using the column_quadtree()
method).

32 Chapter 2. MULgraph geometry files

PyTOUGH Documentation, Release 1.6.2

meshio_grid(surface_snap = 0.1, dimension = 3, slice = None)

Returns mesh corresponding to the geometry, in the format used by the meshio library (https://pypi.python.org/pypi/
meshio). This consists of a two-element tuple: firstly, an np.array of nodal coordinates, and secondly a dictionary of
element definitions, indexed by number of nodes in the elements.

The primary use of this is as an interchange format for input/output of meshes in different formats. Note that exporting
the geometry directly to a mesh file can also be done using the write_mesh() method (which is just a wrapper for this
one).

Parameters:

• surface_snap: float
Tolerance for eliminating elements with very small vertical thickness at the top of the mesh.

• dimension: integer
Dimension of the mesh: when set to 3, return the full 3-D mesh. When set to 2, return a 2-D mesh,
corresponding either to the horizontal mesh only (the default), or a vertical slice mesh if the slice parameter is
used.

• slice: list, string, float or None
Horizontal line defining the slice for vertical 2-D meshes. This can be a list of two horizontal (x,y) points
(np.arrays) defining the endpoints of the slice line, or string ‘x’ or ‘y’ to specify the x- or y-axis, or northing
(float) through grid centre. If set to None (the default) then the horizontal 2-D mesh is returned.

minc_array(vals, minc_indices, level=0, outside=0.0)

Returns an array for all blocks in the geometry, with values taken from the input vals array, for the specified MINC
level. Indexing of MINC blocks is specified by the minc_indices array (returned by the t2grid minc() method).

Parameters:

• vals: np.array
Array of values over the entire MINC grid, with values for all MINC levels, obtained e.g. from a column of the
element table of a t2listing object.

• minc_indices: np.array (of integer)
Rank-2 array containing integer indices for each MINC level, obtained from the output of the t2grid minc()
method.

• level: integer
MINC level, 0 being the fracture level and higher levels being the matrix levels.

• outside: Boolean or float
Determines how blocks outside the MINC part of the grid are handled. If True, include porous medium values
outside the MINC part of the grid. If a float value is given, assign that value instead. If False, the value zero
will be assigned.

2.2. mulgrid objects 33

https://pypi.python.org/pypi/meshio
https://pypi.python.org/pypi/meshio

PyTOUGH Documentation, Release 1.6.2

nodes_in_columns(columns)

Returns a list of all nodes in a specified list of columns.

Parameters:

• columns: list (of column)
List of columns in which to find nodes.

nodes_in_polygon(polygon)

Returns a list of all nodes inside the specified polygon or rectangle.

Parameters:

• polygon: list (of np.array)
List of points defining the polygon (each point is a two-element np.array). If the list has only two points, it
will be interpreted as a rectangle [bottom left, top right].

node_nearest_to(point, kdtree=None)

Returns the node nearest to a specified point. An optional kd-tree structure can be specified to speed searching - useful
if searching for many points.

Parameters:

• point: np.array, list or tuple
Array or list of length 2, specifying the required point in 2-D.

• kdtree: cKDTree
kd-tree structure for searching for nodes. Such a tree can be constructed using the node_kdtree property of a
mulgrid object. You will need the scipy library installed before you can use this property.

optimize(nodenames=None, connection_angle_weight=1.0, column_aspect_weight=0.0,
column_skewness_weight=0.0, pest=False)

Adjusts positions of the specified nodes to optimize grid quality. If no nodes are specified, all node positions are
optimized. Grid quality can be defined as a combination of connection angle cosine, column aspect ratio and column
skewness. Increasing the weight for any of these increases its importance in the evaluation of grid quality.

Note that an error will result if the connection angle weight and either of the other two weights is set to zero - in this
case there are not enough constraints to fit the parameters.

If the pest parameter is set to True, the PEST parameter estimation software is used to carry out the optimzation
(this obviously requires that PEST is installed on your machine). Otherwise, the leastsq routine in the scipy Python
library is used. PEST seems to be more robust in some cases, and often gives better results when nodes on the boundary
of the grid are included in the optimization. However, when leastsq does work satisfactorily, it is generally faster
(mainly because PEST has to read the geometry from disk and write it out again each time the grid quality is evaluated
during the optimization). If PEST is used, a variety of intermediate files (named pestmesh.*) will be written to
the working directory, including the PEST run record file (pestmesh.rec) which contains a detailed record of the
optimization process.

34 Chapter 2. MULgraph geometry files

http://www.pesthomepage.org/

PyTOUGH Documentation, Release 1.6.2

Parameters:

• nodenames: list of string
List of names of nodes to optimize. If not specified, all nodes in the grid are optimized.

• connection_angle_weight: float
Weighting to be given to connection angle cosines. A higher value will place greater priority on making
connections perpendicular to the column sides.

• column_aspect_weight: float
Weighting to be given to column aspect ratios. A higher value will place greater priority on making column
side ratios closer to 1.0.

• column_skewness_weight: float
Weighting to be given to column skewness. A higher value will place greater priority on making column angle
ratios closer to 1.0.

• pest: Boolean
Set True to use the PEST parameter estimation software to perform the optimization.

polyline_values(polyline, variable, divisions=100, coordinate=False, qtree=None)

Returns values of a specified variable along an arbitrary polyline through the grid, defined as a list of 3-element lists or
np.arrays specifying points in 3D. The variable can be a list or np.array containing a value for every block in the
grid. The number of divisions along the line (default 100) can be optionally specified.

The routine returns a tuple of two arrays (l,v), the first (l) containing the distance from the start (or the appropriate
coordinate (0, 1, or 2) if coordinate is specified) for each point along the polyline, and the second (v) containing
the value of the variable at that point. The value of the variable at any point is the (block average) value at the block
containing the point.

Parameters:

• polyline: list of 3-element lists or np.arrays
Polyline points in 3D.

• variable: list (or np.array)
Variable to be plotted, of length equal to the number of blocks in the grid.

• divisions: integer
Number of segments the line is divided up into (default 100).

• coordinate: integer or Boolean
If False, return distance along the line in first array, otherwise return specified coordinate (0, 1 or 2) values.

• qtree: quadtree
Quadtree object for fast searching of grid columns (can be constructed using the column_quadtree() method).

2.2. mulgrid objects 35

PyTOUGH Documentation, Release 1.6.2

read(filename)

Reads a mulgrid object from a MULgraph geometry file on disk.

Parameters:

• filename: string
Name of the MULgraph geometry file to be read.

Example:

geo = mulgrid().read(filename)

creates a mulgrid object and reads its contents from file filename. This can be done more simply just by passing the
filename into the mulgrid creation command:

geo = mulgrid(filename)

rectangular(xblocks, yblocks, zblocks, convention=0, atmos_type=2, origin=[0,0,0],
justify='r', case=None, chars=ascii_lowercase, spaces=True, block_order=None)

Gives a mulgrid geometry object a rectangular grid structure. The grid sizes in the x, y and z directions can be
non-uniform, and the grid column and layer naming convention, atmosphere type and origin can be specified. The
optional justify and case parameters control the formatting of the character part of the block names. Additionally,
the characters used to form node/column or layer names can be specified using the chars parameter. (This can be
useful for example for grids with large numbers of nodes and/or columns, for which lowercase letters alone may not be
enough.)

Note that it is also possible to reverse-engineer a rectangular geometry from an existing TOUGH2 data file or t2grid
object, using the rectgeo() method.

Parameters:

• xblocks, yblocks, zblocks: list, tuple or np.array
Lists (or arrays) of block sizes (float) in the x, y and z directions.

• convention: integer
Naming convention for grid columns and layers.

• atmos_type: integer
Type of atmosphere.

• origin: list (or np.array)
Origin of the grid (of length 3).

• justify: string
Specify ‘r’ for the character part of the block names (first three characters) to be right-justified, ‘l’ for
left-justified.

• case: string
Specify ‘l’ for the character part of the block names (first three characters) to be lower case, ‘u’ for upper case.
Now deprecated - using the chars parameter is more flexible.

• chars: string
Specify a string of characters to be used to form the character part of block names. For example, to use both
lowercase and uppercase characters, set chars to ascii_lowercase + ascii_uppercase, or to use
uppercase letters only, specify ascii_uppercase.

36 Chapter 2. MULgraph geometry files

PyTOUGH Documentation, Release 1.6.2

• spaces: Boolean
Specify False to disallow spaces in character part of block names. In this case, the first element of the chars
parameter functions like a ‘zero’ and replaces spaces.

• block_order: string or None
Specify None or ‘layer_column’ for default block ordering by layer and column, starting from the atmosphere.
Specify ‘dmplex’ to order blocks by geometrical type (8-node hexahedrons first followed by 6-node wedges) as
in PETSc DMPlex meshes.

Example:

geo = mulgrid().rectangular([1000]*10, [500]*20, [100]*5+[200]*10, origin=[0,0,2500])

creates a mulgrid object called geo, and fills it with a rectangular grid of 10 blocks of size 1000 m in the x-direction,
20 blocks of size 500 m in the x-direction, 5 layers at the top of thickness 100 m and 10 layers underneath of thickness
200 m, and with origin (0,0,2500) m. The grid will have the default naming convention (0) and atmosphere type (2).

reduce(columns)

Reduces a grid so that it contains only the specified list of columns (or columns with specified names).

Parameters:

• columns: list
List of required columns or column names.

refine(columns=[], bisect=False, bisect_edge_columns=[], chars = ascii_lowercase,
spaces=True)

Refines the specified columns in the grid. Appropriate transition columns are created around the refined region. If no
columns are specified, all columns are refined. All columns in the region to be refined (and in the transition region)
must be either triangular or quadrilateral. Each column in split into four, unless the bisect parameter is True, in
which case each column in split into two. If bisect is ‘x’ or ‘y’, columns are split in the closest direction to the axis
specified; or if bisect is True, between its longest sides.

The bisect_edge_columns parameter can be used to give more desirable column shapes in the transition region, if
the original columns occupying the transition region have large aspect ratios. By default, these will become even worse
when they are triangulated to form the transition columns, if they are connected to the refinement region by their shorter
sides. Including them in bisect_edge_columns means they will be bisected (parallel to the edge of the refinement
region) before the refinement is carried out, which should improve the aspect ratios of the transition columns.

Note: TOUGH2 implicitly assumes that the connections in its finite volume grids are orthogonal, i.e. the line joining
the centres of two connected blocks should be perpendicular to the connecting face. The triangular transition columns
generated by the refine() method generally give rise to connections that are not orthogonal. However, they can be
modified and made as orthogonal as possible using the optimize() method.

Parameters:

• columns: list
List of columns or column names to be refined.

• bisect: Boolean or string

2.2. mulgrid objects 37

PyTOUGH Documentation, Release 1.6.2

Set to True if columns are to be split into two, between their longest sides, instead of four (the default). Set to
‘x’ or ‘y’ to split columns along the specified axis.

• bisect_edge_columns: list
List of columns or column names in the transition region (just outside the refinement area) to be bisected prior
to the refinement, to improve the aspect ratios of the transition columns.

• chars: string
Specifies a string of characters to use when forming the character part of block names. Default is lowercase
letters.

• spaces: Boolean
Specify False to disallow spaces in character part of block names. In this case, the first element of the chars
parameter functions like a ‘zero’ and replaces spaces.

refine_layers(layers=[], factor=2, chars = ascii_lowercase, spaces=True)

Refines the specified layers in the grid. If no layers are specified, all layers are refined. Each layer is refined by the
specified integer factor.

Parameters:

• layers: list
List of layers or layer names to be refined.

• factor: integer
Refinement factor: default is 2, which bisects each layer.

• chars: string
Specifies a string of characters to use when forming the character part of block names. Default is lowercase
letters.

• spaces: Boolean
Specify False to disallow spaces in character part of block names. In this case, the first element of the chars
parameter functions like a ‘zero’ and replaces spaces.

rename_column(oldcolname, newcolname)

Renames a grid column. Returns True if the column was found and renamed, or False if the specified column does
not exist. Multiple columns can be renamed at once by specifying lists of old and new column names - this is faster
than calling the method multiple times, and the block and connection name lists are updated only once.

Parameters:

• oldcolname: string or list of strings
Name(s) of the column(s) to rename.

• newcolname: string or list of strings
New name(s) of the column(s).

38 Chapter 2. MULgraph geometry files

PyTOUGH Documentation, Release 1.6.2

rename_layer(oldlayername, newlayername)

Renames a grid layer. Returns True if the layer was found and renamed, or False if the specified layer does not exist.
Multiple layers can be renamed at once by specifying lists of old and new layer names - this is faster than calling the
method multiple times, and the block and connection name lists are updated only once.

Parameters:

• oldlayername: string or list of strings
Name(s) of the layer(s) to rename.

• newlayername: string or list of strings
New name(s) of the layer(s).

rotate(angle, centre=None, wells=False)

Rotates a grid by a specified angle (in degrees) clockwise in the horizontal plane. Any wells in the grid are also rotated.
The centre of rotation can be optionally specified. If it is not specified, the centre of the grid is used as the centre of
rotation. If the wells parameter is True, any wells in the grid are also rotated.

Parameters:

• angle: float
Angle (in degrees) to rotate the grid, positive for clockwise, negative for anti-clockwise.

• centre: list, tuple or np.array
Centre of rotation in the horizontal x,y plane (of length 2).

• wells: Boolean
Set True to rotate wells.

Example:

geo.rotate(30)

rotates the grid geo clockwise by 30° about its centre in the horizontal plane.

slice_plot(line=None, variable=None, variable_name=None, unit=None, block_names=None,
colourmap=None, linewidth=0.2, linecolour='black', aspect='auto', plt=None,
subplot=111, title=None, xlabel='', ylabel='elevation (m)', contours=False,
contour_label_format='%3.0f', contour_grid_divisions=(100,100), colourbar_limits=None,
plot_limits=None, column_axis=False, layer_axis=False, wells=None, well_names=True,
hide_wells_outside=False, wellcolour='blue', welllinewidth=1.0, wellname_bottom=False,
rocktypes=None, allrocks=False, rockgroup=None, flow=None, grid=None, flux_matrix=None,
flow_variable_name=None, flow_unit=None, flow_scale=None, flow_scale_pos=(0.5, 0.02),
flow_arrow_width=None, connection_flows=False, blockmap = {})

Plots a variable over a vertical slice through the grid, using the matplotlib plotting library. The required slice is
specified by a horizontal line through the grid, defined as either a two-element list of (x,y) points (np.arrays), or as a
string ‘x’ or ‘y’ which defines the x- or y-axes respectively, or as a northing (in degrees) through the centre of the grid.
If no line is specified, the line is taken to be across the bounds of the grid. For slice plots along the x- or y-axis, the
horizontal coordinate represents the x- or y-coordinate; for other slice directions it represents distance along the slice
line.

2.2. mulgrid objects 39

PyTOUGH Documentation, Release 1.6.2

The variable can be a list or np.array containing a value for every block (or column) in the grid, in the order given by
the block_name_list property of the geometry. If no variable is specified, only the grid is plotted, without shading.
If the variable contains a value for each column in the grid, these values are extended down each column to fill the
entire grid.

The name and units of the variable can optionally be specified, and the name of each block can also optionally be
displayed on the plot. The colour map and limits of the variable shading, the line width of the grid columns and the
aspect ratio of the plot can also be set, as can the plot title and x- and z-axis labels, and the plot limits.

When a variable is plotted over the grid, contours at specified levels can also be drawn, and optionally labelled with
their values.

Well tracks can also optionally be plotted. Each well is drawn as a line following the well track, with the well name at
the top (or optionally the bottom) of the well. If hide_wells_outside is specified as a floating point number, wells
that do not pass within the specified distance from the slice line are not shown. Well tracks are shown as solid lines
over sections within the specified distance from the slice line, and dotted lines otherwise.

Rock types can be shown on the slice plot by specifying a t2grid object as the rocktypes parameter. It is possible
to group similar rock types (e.g. those in the same geological formation but with slightly different permeabilities) to
simplify the plot if there are a lot of rock types.

Flows can be shown on the slice by specifying an array of connection flow values (e.g mass flow) as the flow parameter.
Flows will then be drawn on the slice by arrows at the block centres, each representing the average flux (flow per unit
area) over the block, projected onto the slice. (For example, connection values of mass flow in kg/s will be represented
as block-average mass fluxes in kg/𝑚2/s.) Alternatively, flows through the connection faces can be plotted by setting
the connection_flows parameter to True.

Parameters:

• line: list, string or float
List of two horizontal (x,y) points (np.arrays) defining the endpoints of the line, or string ‘x’ or ‘y’ to specify
the x- or y-axis, or northing (float) through grid centre.

• variable: list (or np.array)
Variable to be plotted, of length equal to the number of blocks (or columns) in the grid (or None just to plot the
grid).

• variable_name: string
Name of the variable (as it will appear on the scale of the plot).

• unit: string
Units of the variable (as it will appear on the scale of the plot).

• block_names: Boolean or list
Set to True if block names are to be indicated on the plot, or to a list of names of blocks to be named.

• colourmap: string
Name of matplotlib colour map to use for shading the variable.

• linewidth: float
Line width to use for drawing the grid.

• linecolour: string
Line colour to use for drawing the grid.

• aspect: string
Aspect ratio to use for drawing the grid (default is ‘auto’).

• plt: matplotlib.pyplot instance

40 Chapter 2. MULgraph geometry files

PyTOUGH Documentation, Release 1.6.2

An instance of the matplotlib.pyplot library, imported in the calling script using e.g. import
matplotlib.pyplot as plt.

• subplot: integer
Subplot number for multi-plots, e.g. set 223 to draw the third plot in a 2-by-2 multiplot (default is 111).

• title: string
Plot title. If set to None (the default value), a title will be constructed from the other plot parameters. Set to for
no title.

• xlabel: string
x axis label. If set to None (the default value), a label will be constructed according to the slice orientation-
either ‘x (m)’, ‘y (m)’ or ‘distance (m)’ as appropriate.

• ylabel: string
y axis label (default is ‘elevation (m)’).

• contours: Boolean, list or np.array
Set to True or to a list or array of contour values to draw contours on the plot (default False).

• contour_label_format: string
Format string for contour labels (default ‘%3.0f’).

• contour_grid_divisions: tuple (of integer)
Number of divisions in the x- and z-directions in the regular grid superimposed on the slice, and used to
produce the contours (default (100,100)).

• colourbar_limits: tuple, list, np.array (or None)
Specify a two-element tuple, list or np.array to set the limits of the colour scale. Default (None) will
auto-scale.

• plot_limits: tuple or list (or None)
Specify a two-element tuple (or list) of plot axis ranges, each itself being a tuple (or list) of minimum and
maximum values, i.e. ((xmin,xmax),(zmin,zmax)). Default is False which will auto-scale.

• column_axis: Boolean
If True, show column names instead of coordinates on the horizontal axis.

• layer_axis: Boolean
If True, show layer names instead of coordinates on the vertical axis.

• wells: Boolean or list (or None)
Specify True to plot all well tracks, False or None not to plot them, or a list of wells or well names to specify
only particular wells.

• well_names: Boolean or list (or None)
Specify True to label each well with its name , False or None not to label them, or a list of wells or well
names to label only particular wells.

• hide_wells_outside: False or float
Specify distance as a floating point number to hide wells further from the slice line than the specified distance.

• wellcolour: string
Colour to use for drawing the wells.

• welllinewidth: float
Line width for drawing the wells.

• wellname_bottom: Boolean
Set to True to label wells at the bottom rather than the wellhead.

2.2. mulgrid objects 41

PyTOUGH Documentation, Release 1.6.2

• rocktypes: t2grid (or None)
To plot rock types, specify a t2grid object containing rock types for the grid. If None, no rock types will be
plotted.

• allrocks: Boolean
If False (the default), only rock types present on the specified slice will be shown in the colour bar; others will
be omitted. If True, all rocks present in the model grid will be shown on the colour bar, regardless of whether
they appear in the specified slice.

• rockgroup: tuple, list, string (or None)
To group similar rock types into one colour, specify a tuple or list of integers, representing the significant
characters of the rock type names. For example, to group rock types having the same first two characters,
specify (0,1). Alternatively, specify a 5-character string mask containing asterisks in positions that are not
significant, and any other characters in the significant positions (e.g. ‘++***’).

• flow: np.array (or None)
To plot flows, specify an array of connection flow values (one floating point value for each connection in the
grid). These may for example be extracted from the columns of the connection table in a t2listing object.

• grid: t2grid (or None)
Specify a t2grid object associated with the grid, to be used to calculate the ‘flux matrix’ which converts the
connection flow values to block-average fluxes. If this is not specified (and neither is the flux_matrix
parameter), then a t2grid object will be created internally.

• flux_matrix: scipy.sparse.lil_matrix (or None)
A sparse matrix used to convert the connection flow values to block-average fluxes. Such a matrix can be
created using the flux_matrix() method of a t2grid object and an appropriate mulgrid object. If no flux
matrix is specified, one will be created internally. This can be time-consuming for large grids, so for multiple
flow plots it is faster to pre-calculate a flux matrix in your script and pass it via this parameter. If this parameter
is specified, there is no need also to specify the grid parameter.

• flow_variable_name: string (or None)
Name of the flow variable (as it will appear on the scale of the plot).

• flow_unit: string (or None)
Units of the flow variable (as it will appear on the scale of the plot, divided by area).

• flow_scale: string (or None)
Length of flow scale arrow. If not specified, this will be calculated.

• flow_scale_pos: tuple
Position of the flow scale on the plot, in units of dimensionless plot size. The default (0.5, 0.02) draws the flow
scale in the horizontal centre of the plot, slightly above the bottom axis. If you want the flow scale below the
bottom axis (so it doesn’t get mixed up with the actual flow arrows), specify this parameter with a small
negative second component, e.g. (0.8, -0.1).

• flow_arrow_width: float (or None)
Width of the flow arrows, in units of dimensionless plot width. If not specified, this will be calculated internally.

• connection_flows: Boolean
Set to True to plot flows through connection faces, rather than block-averaged fluxes. In this case, usually the
grid parameter should also be specified (but not flux_matrix), otherwise a grid will be calculated internally.

• blockmap: dictionary
Dictionary mapping the block names in the geometry to another block naming system. This has an effect only
on the block names displayed on the plot via the block_names parameter, and on the rock types displayed.
Note that if a mapping is used, then the block_names list should contain mapped block names.

42 Chapter 2. MULgraph geometry files

PyTOUGH Documentation, Release 1.6.2

Example:

geo.slice_plot(45., t, 'Temperature', '\degreeC', contours = [100,200])

plots the variable t through a SW–NE vertical slice (heading 45°) through the grid, with the values as Temperature
(°C) and contours drawn at 100°C and 200°C.

from matplotlib import cm
cmap = cm.get_cmap('jet', 10)
geo.slice_plot(45., t, 'Temperature', '\degreeC',
colourbar_limits = (0., 250.), colourmap = cmap)

plots the variable t again, but with a specified discrete colour scale with 10 divisions from zero to 250°C.

snap_columns_to_layers(min_thickness=1.0, columns=[])

Snaps column surfaces to the bottom of their layers, if the surface block thickness is smaller than a given value. This
can be carried out over an optional subset of columns in the grid, otherwise over all columns.

Parameters:

• min_thickness: float
Minimum surface block thickness. Blocks with thickness less than this value will be eliminated by ‘snapping’
the column surface elevation to the bottom of the surface layer. Values of min_thickness less than or equal to
zero will have no effect.

• columns: list (of column or string)
List of columns to process. If empty (the default), process all columns.

snap_columns_to_nearest_layers(columns=[])

Snaps column surfaces to the nearest layer elevation (top or bottom). This can be carried out over an optional subset
of columns in the grid, otherwise over all columns.

Parameters:

• columns: list (of column or string)
List of columns to process. If empty (the default), process all columns.

split_column(colname, nodename, chars = ascii_lowercase)

Splits a quadrilateral column with specified name into two triangular columns. The direction of the split is determined
by specifying the name of one of the splitting nodes. The method returns True if the split was carried out successfully.

Parameters:

• colname: string
Name of the quadrilateral column to be split. If the column is not quadrilateral, the method returns False and
nothing is done to the column.

2.2. mulgrid objects 43

PyTOUGH Documentation, Release 1.6.2

• nodename: string
Name of one of the splitting nodes. The column is split across this node and the one on the opposite side of the
column. If the specified node is not in the column, the method returns False and nothing is done to the column.

• chars: string
Specifies a string of characters to use when forming the character part of block names. Default is lowercase
letters.

translate(shift, wells=False)

Translates a grid by a specified shift in the x, y and z directions. If the wells parameter is True, any wells in the grid
are also translated.

Parameters:

• shift: list, tuple or np.array
Distance to shift the grid in the x, y and z directions (of length 3).

• wells: Boolean
Set True to translate wells.

Example:

geo.translate([10.e3, 0.0, -1000.0])

translates the grid geo by 10 km in the x direction and down 1 km in the z direction.

well_values(well_name, variable, divisions=1, elevation=False, deviations=False,
qtree=None, extend=False)

Returns values of a specified variable down a specified well. The variable can be a list or np.array containing a value
for every block in the grid. The number of divisions between layer centres or along each well deviation (default 1) can
be optionally specified (this can be increased to capture detail along a deviation that passes through several blocks). If
deviations is True, values will be returned at the nodes of the well track, instead of at grid layer centres. If extend
is True, the well trace is artificially extended to the bottom of the model.

The routine returns a tuple of two arrays (d,v), the first (d) containing the measured depth down the well (or elevation
if the elevation parameter is set to True), and the second (v) containing the value of the variable at each point. The
value of the variable at any point is the (block average) value at the block containing the point.

Parameters:

• well_name: string
Name of the well.

• variable: list (or np.array)
Variable to be plotted, of length equal to the number of blocks in the grid.

• divisions: integer
Number of divisions each well deviation is divided up into (default 1).

• elevation: Boolean
Set to True if elevation rather than measured depth is to be returned.

44 Chapter 2. MULgraph geometry files

PyTOUGH Documentation, Release 1.6.2

• deviations: Boolean
Set to True to return values at deviation nodes, rather than intersections of layer centres with the well track.

• qtree: quadtree
Quadtree object for fast searching of grid columns (can be constructed using the column_quadtree() method).

• extend: Boolean
Set True to artificially extend the well trace to the bottom of the model.

write(filename='')

Writes a mulgrid object to a MULgraph geometry file on disk.

Parameters:

• filename: string
Name of the MULgraph geometry file to be written. If no file name is specified, the object’s own filename
property is used.

write_bna(filename='')

Writes a geometry object to an Atlas BNA file on disk, for visualisation with Surfer or GIS tools.

Parameters:

• filename: string
Name of the BNA file to be written. If no file name is specified, the object’s own filename property is used,
with the extension changed to *.bna. If the object’s filename property is not set, the default name
‘geometry.bna’ is used.

write_exodusii(filename='', arrays=None, blockmap={})

Writes a mulgrid object to an ExodusII file on disk, for visualisation or export to other software.

This method uses the VTK-Python library, so you will need that installed on your machine before you can use it. An
alternative is to use the write_mesh method instead, which can also write meshes to ExodusII format (as well as others),
and does not need the VTK-Python library (though you will need the meshio library).

Parameters:

• filename: string
Name of the ExodusII file to be written. If no file name is specified, the object’s own filename property is
used, with the extension changed to *.exo. If the object’s filename property is not set, the default name
‘geometry.exo’ is used.

• arrays: dictionary or None
Data arrays to be included in the ExodusII file. If set to None, default arrays (block name, layer index, column
index, column area, column elevation, block number and volume) are included.

• blockmap: dictionary
Dictionary mapping the block names in the geometry to another block naming system.

2.2. mulgrid objects 45

PyTOUGH Documentation, Release 1.6.2

write_mesh(filename, surface_snap = 0.1, dimension = 3, slice = None, file_format = None)

Writes a mulgrid object to a mesh file on disk, with the specific format determined by the file extension of the specified
filename. This method uses the meshio library, which must be installed on your machine, and supports various mesh
output formats including Dolfin XML, ExodusII, MSH, VTK, XDMF and others. The meshio library may be installed
from PyPI (using e.g. pip install meshio).

Note that many of these formats do not support columns with more than four sides.

Parameters:

• filename: string
Name of the mesh file to be written.

• surface_snap: float
Tolerance for eliminating elements with very small vertical thickness at the top of the mesh (3-D meshes only).

• dimension: integer
Dimension of the mesh: when set to 3 (the default), write the full 3-D mesh. When set to 2, write a 2-D mesh,
corresponding either to the horizontal mesh only (the default), or a vertical slice mesh if the slice parameter is
used.

• slice: list, string, float or None
Horizontal line defining the slice for vertical 2-D meshes. This can be a list of two horizontal (x,y) points
(np.arrays) defining the endpoints of the slice line, or string ‘x’ or ‘y’ to specify the x- or y-axis, or northing
(float) through grid centre. If set to None (the default) then the horizontal 2-D mesh is written.

• file_format: string or None
File format for mesh output. If None, the file format will be decided from the filename extension (e.g. if the
filename is ‘mesh.exo’ then the mesh will be written in ExodusII format). See the meshio documentation for
details.

write_vtk(filename='', arrays=None, wells=False, blockmap={}, surface_snap=0.1)

Writes a mulgrid object to a VTK file on disk, for visualisation with VTK, Paraview, Mayavi etc. The grid is written
as an ‘unstructured grid’ VTK object with optional data arrays defined on cells. A separate VTK file for the wells in
the grid can optionally be written.

Parameters:

• filename: string
Name of the VTK file to be written. If no file name is specified, the object’s own filename property is used,
with the extension changed to *.vtu. If the object’s filename property is not set, the default name
‘geometry.vtu’ is used.

• arrays: dictionary or None
Data arrays to be included in the VTK file. If set to None, default arrays (block name, layer index, column
index, column area, column elevation, block number and volume) are included.

• wells: Boolean
If set to True, a separate VTK file is written representing the wells in the grid.

• blockmap: dictionary
Dictionary mapping the block names in the geometry to another block naming system.

• surface_snap: float

46 Chapter 2. MULgraph geometry files

https://pypi.python.org/pypi/meshio

PyTOUGH Documentation, Release 1.6.2

Tolerance for specifying how close column surface elevations need to be before being considered “equal” when
constructing surface nodes.

2.3 Other objects (node, column, layer, connection and well)

A mulgrid object contains lists of other types of objects: node, column, layer, connection and well objects. These
classes are described below.

2.3.1 node objects

A node object represents a node (i.e. vertex) in a mulgrid object. A node object has three properties: name, which
is a string property containing the name of the node, pos which is an np.array with three elements, containing the
node’s position in 3D, and column which is a set of the columns the node belongs to. A node object does not have any
methods.

A node object n can be created for example using the command n = node(name,pos) where name is the node name
and pos is an np.array (or list, or tuple) representing the node’s position.

2.3.2 column objects

A column object represents a column in a mulgrid object. The properties of a column object are listed in the table
below.

Table 3: Properties of a column object

Property Type Description
angle_ratio float ratio of largest to smallest interior angles
area float horizontal area of the column
centre np.array horizontal centre of the column
centroid np.array average position of the column’s vertices
connection set connections the column is in
name string name of the column
neighbour set set of neighbouring columns
neighbourlist list ordered list of neighbouring columns
node list list of nodes (vertices) belonging to the column
num_neighbours integer number of neighbouring columns
num_nodes integer number of nodes belonging to the column
num_layers integer number of layers in the column below the ground surface
side_ratio float ratio of largest to smallest side length
surface float surface elevation of the column (None if not specified)

The main properties defining a column are its name and node properties. The name is specified according to the naming
convention of the mulgrid object that the column belongs to. The node property is a list of node objects (not node
names) that belong to the column. A column‘s neighbour property is a set of other columns connected to that column
via a connection), and its property is a set of connections the column is part of. The neighbourlist property is a list
of neighbouring columns, with each item corresponding to a column edge (None if the edge is on a grid boundary). A
column‘s centroid property returns the average of the positions of its vertices - which is what the centre property
is set to, unless otherwise specified.

2.3. Other objects (node, column, layer, connection and well) 47

PyTOUGH Documentation, Release 1.6.2

A column object has two properties measuring ‘grid quality’. The angle_ratio property returns the ratio of largest
to smallest interior angles in the column. The side_ratio property returns the ratio of largest to smallest side lengths
(a generalisation of ‘aspect ratio’ to columns with any number of sides). Values as close as possible to 1.0 for both
these measures are desirable (their values are both exactly 1.0 for any regular polygon, e.g. an equilateral triangle or
square). Columns with large angle ratios will be highly skewed, while those with large side ratios will be typically
highly elongated in one direction.

A column object col can be created for example using the command:

col = column(name, nodes, centre, surface)

where name is the column name and nodes is a list of node objects defining the column. The centre and surface
parameters are optional.

The methods of a column object are listed in the table below.

Table 4: Methods of a column object

Method Type Description
contains_point() Boolean if column contains point
in_polygon() Boolean if column centre is within a given polygon
is_against() Boolean if two columns are adjacent

contains_point(pos)

Returns True if a 2D point lies inside the column, and False otherwise.

Parameters:

• pos: np.array
Horizontal position of the point.

in_polygon(polygon)

Returns true if the column centre is inside the specified polygon or rectangle.

Parameters:

• polygon: list (of np.array)
List of points defining the polygon (each point is a two-element np.array). If the list has only two points, it
will be interpreted as a rectangle [bottom left, top right].

48 Chapter 2. MULgraph geometry files

PyTOUGH Documentation, Release 1.6.2

is_against(othercolumn)

Returns true if the column is ‘against’ othercolumn – that is, if it shares more than one node with it.

Parameters:

• othercolumn: column)
Any other column in the geometry.

2.3.3 layer objects

A layer object represents a layer in a mulgrid object. The properties of a layer object are given in the table below.

Table 5: Properties of a layer object

Property Type Description
bottom float elevation of the bottom of the layer
centre float elevation of the centre of the layer
thickness float layer thickness (top - bottom)
top float elevation of the top of the layer
name string name of the layer

A layer object lay can be created for example using the command:

lay = layer(name, bottom, centre, top)

where name is the layer name and bottom, centre and top specify the vertical position of the layer.

The methods of a layer object are given in the table below.

Table 6: Methods of a layer object

Method Type Description
contains_elevation() Boolean if layer contains elevation
translate() – translate layer up or down

contains_elevation(z)

Returns True if a point at a given elevation lies inside the layer, and False otherwise.

Parameters:

• z: float
Elevation of the point.

2.3. Other objects (node, column, layer, connection and well) 49

PyTOUGH Documentation, Release 1.6.2

translate(shift)

Translates a layer up or down by a specified distance.

Parameters:

• shift: float
Distance to shift the layer (positive for up, negative for down).

2.3.4 connection objects

A connection object represents a connection between columns in a mulgrid object. It has three properties: column,
which contains a two-element list of the column objects making up the connection, node, which contains a two-element
list of the nodes on the face joining the two columns in the connection, and angle_cosine, which gives the cosine of
the angle between a line joining the nodes in the connection and a line joining the centres of the two columns. This is
used as a measure of grid quality, these two lines should ideally be as close to perpendicular as possible, making the
cosine of the angle zero. A connection has no methods.

A connection object con can be created for example using the command

con = connection(cols)

where cols is a two-element list of the column objects in the connection.

2.3.5 well objects

A well object represents a well in a mulgrid object. The properties of a well object are given in the table below.

Table 7: Properties of a well object

Property Type Description
bottom np.array well bottom position
deviated Boolean whether well is deviated
head np.array well head position
name string well name
num_deviations integer number of deviations
num_pos integer number of well track nodes
pos list positions (3-D arrays) of well track nodes
pos_depth np.array downhole depths along well track

The well track can be deviated, and is defined as a list pos of (at least two) 3D positions (np.arrays). The
num_deviations property returns the number of deviations in the track (one less than the num_pos property, which
is the number of nodes in the pos list). The deviated property returns True if there is more than one deviation. The
pos_depth property returns an array of the downhole depths at each node along the well track.

A well object w can be created simply with the command w = well(name,pos), where name is the well name and
pos is a list of 3-element np.arrays (or lists, or tuples) representing the well trace (starting from the wellhead).

The methods of a well object are listed in the table and described below.

50 Chapter 2. MULgraph geometry files

PyTOUGH Documentation, Release 1.6.2

Table 8: Methods of a well object

Method Type Description
depth_elevation float elevation for a given downhole depth
depth_pos np.array position on well track for a given downhole depth
elevation_depth float downhole depth for a given elevation
elevation_pos np.array position on well track for a given elevation
pos_coordinate np.array array of coordinates for a given index

depth_elevation(depth)

Returns the elevation corresponding to the specified downhole depth (or None if depth is above the wellhead or below
the bottom).

Parameters:

• depth: float
Downhole depth.

depth_pos(depth)

Returns the 3D position of the point in the well with specified downhole depth (or None if depth is above the wellhead
or below the bottom). The position is interpolated between the deviation locations.

Parameters:

• depth: float
Downhole depth of the required point.

elevation_depth(elevation)

Returns the downhole depth corresponding to the specified elevation (or None if elevation is above the wellhead
or below the bottom).

Parameters:

• elevation: float
Elevation.

elevation_pos(elevation, extend=False)

Returns the 3D position of the point in the well with specified elevation (or None if elevation is above the well-
head or below the bottom). The position is interpolated between the deviation locations. If extend is True, return
extrapolated positions for elevations below the bottom of the well.

Parameters:

• elevation: float

2.3. Other objects (node, column, layer, connection and well) 51

PyTOUGH Documentation, Release 1.6.2

Elevation of the required point.

• extend: Boolean
If True, extrapolated positions will be returned for elevations below the bottom of the well (otherwise None
will be returned).

pos_coordinate(index)

Returns an np.array of the well track node coordinates for the given index (0, 1 or 2). For example,
pos_coordinate(2) returns an array containing the elevations of all well track nodes.

Parameters:

• index: integer
Index required (0, 1 or 2).

2.4 Other functions: block name conversions

The mulgrids library contains two other functions connected with working with geometry files and TOUGH2 grids:

2.4.1 fix_blockname(name)

TOUGH2 always assumes that the last two characters of a block name represent a two-digit number. However, if that
number is less than 10, the fourth character is not padded with zeros, so for example ‘AA101’ becomes ‘AA1 1’ when
processed by TOUGH2.

The fix_blockname function corrects this by padding the fourth character of a block name with a zero if necessary.
This is only done if the third character is also a digit, e.g. when naming convention 2 is used (two characters for layer
followed by three digits for column).

Parameters:

• name: string
Block name.

2.4.2 unfix_blockname(name)

This function reverses the effect of fix_blockname().

Parameters:

• name: string
Block name.

52 Chapter 2. MULgraph geometry files

PyTOUGH Documentation, Release 1.6.2

2.5 Block mappings: handling other block naming conventions

The MULgraph geometry format names blocks according to one of its naming conventions. All of these conventions
use part of the block name to indicate the layer and part of it to indicate the column.

However, in PyTOUGH it is possible to make a mulgrid object handle other block naming conventions by means of
a block mapping. This is simply a dictionary that maps the block names in a mulgrid to block names in a t2grid
object. The block names in the t2grid can follow an arbitrary convention, not based on layers and columns. For
example, blocks in TOUGH2 grids created by PetraSim may be simply numbered.

A block mapping dictionary can be passed in as an optional parameter to many PyTOUGH methods that involve both a
MULgraph geometry and TOUGH2 grid, for example the mulgrid block_name(), slice_plot() and write_vtk() methods,
and the write_vtk() methods of the t2grid and t2listing classes.

When the rectgeo() method is used to create a mulgrid object from a t2grid, a block mapping is also created, and
may be used in the PyTOUGH methods that can accept a block mapping.

A block mapping need not contain entries for all blocks. If for example a model follows the naming convention of a
MULgraph geometry in most blocks, and only a few are different, then only entries for the different block names need
be present in the mapping dictionary.

Block mappings can be saved to and loaded from disk (like any other Python object) using the pickle library. This
is part of the standard Python library collection. For example a block mapping called blockmap can be saved to a file
called 'blockmap.pkl' as follows:

import pickle
pickle.dump(blockmap, file('blockmap.pkl', 'w'))

It can be loaded back in again like this:

blockmap = pickle.load(file('blockmap.pkl'))

2.5. Block mappings: handling other block naming conventions 53

PyTOUGH Documentation, Release 1.6.2

54 Chapter 2. MULgraph geometry files

CHAPTER

THREE

TOUGH2 GRIDS

3.1 Introduction

The t2grids library in PyTOUGH contains classes and routines for manipulating TOUGH2 grids. It can be imported
using the command:

from t2grids import *

3.2 t2grid objects

The t2grids library defines a t2grid class, used for representing TOUGH2 grids. This gives access via Python to
the grid’s rock types, blocks, connections and other parameters.

Normally a TOUGH2 grid is not created directly, but is either read from a TOUGH2 data file, or constructed from a
mulgrid geometry object using the fromgeo() method.

Printing a t2grid object (e.g. print(grid)) displays a summary of information about the grid: how many rock
types, blocks and connections it contains.

3.2.1 Properties

The main properties of a t2grid object are listed in the table below. Essentially a t2grid object contains collections
of blocks, rock types and connections, each accessible either by name or by index. For example, block ‘AB 20’ in a
t2grid called grid is given by grid.block['AB 20'].

Connections are slightly different from blocks or rock types, in that they are not named individually. However, they
can be accessed by the names of the blocks connected by the connection. For example, the connection between blocks
‘aa 10’ and ‘ab 10’ in a t2grid called grid is given by grid.connection['aa 10','ab 10'].

The rocktype_frequencies property gives information about how frequently each rock type is used (i.e. how many
blocks use that rock type). It returns a list of tuples, the first element of each tuple being the frequency of use, and the
second element being a list of rock type names with that frequency. The list is given in order of increasing frequency.

The rocktype_indices property gives an np.array containing the index of the rocktype for each block in the grid.
This can be used to give a plot of rock types, in conjunction with the mulgrid methods layer_plot or slice_plot.

55

PyTOUGH Documentation, Release 1.6.2

Table 1: Properties of a t2grid object

Property Type Description
atmosphere_blocks list atmosphere blocks
blocklist list blocks (by index)
block dictionary blocks (by name)
block_centres_defined Boolean whether block centres have been calculated
connectionlist list connections (by index)
connection dictionary connections (by tuples of block names)
num_atmosphere_blocks integer number of atmosphere blocks
num_blocks integer number of blocks
num_connections integer number of connections
num_rocktypes integer number of rock types
num_underground_blocks integer number of non-atmosphere blocks
rocktypelist list rock types (by index)
rocktype dictionary rock types (by name)
rocktype_frequencies list of tuples frequencies of rock types
rocktype_indices np.array index of rock type for each block

3.2.2 Methods

The main methods of a t2grid object are listed in the following table. Details of these methods are given below.

56 Chapter 3. TOUGH2 grids

PyTOUGH Documentation, Release 1.6.2

Table 2: Methods of a t2grid object

Method Type Description
+ t2grid adds two grids together
add_block – adds a block to the grid
add_connection – adds a connection to the grid
add_rocktype – adds a rock type to the grid
blockmap dictionary returns block name mapping from a geometry
block_index integer returns index of a block with a specified name
calculate_block_centres – calculates geometrical centre of all blocks in the grid
check Boolean checks grid for errors and optionally fixes them
clean_rocktypes – deletes any unused rock types from the grid
connection_index integer returns index of a connection with a specified pair of

names
copy_connection_directions– copies connection permeability directions from another

grid
delete_block – deletes a block from the grid
delete_connection – deletes a connection from the grid
delete_rocktype – deletes a rock type from the grid
demote_block – shifts a block (or blocks) to the end of the blocklist
embed t2grid embeds a subgrid inside one block of another
empty – empties contents of grid
flux_matrix scipy.sparse.

lil_matrix
constructs a sparse matrix for calculating block-average
flows

fromgeo t2grid constructs a TOUGH2 grid from a mulgrid object
incons t2incon constructs initial conditions for the grid
minc list creates MINC blocks and connections
radial t2grid constructs a radial TOUGH2 grid
rectgeo (mulgrid, dict) constructs a mulgrid object from a rectangular

TOUGH2 grid
rename_blocks – renames blocks the grid
rename_rocktype – renames a rock type in the grid
reorder – reorders blocks and connections in the grid
rocktype_frequency integer frequency of use of a particular rock type
sort_rocktypes – sorts rock type list into alphabetical order by name
write_vtk – writes grid to VTK file

+

Adds two grids a and b together (i.e. amalgamates them) to form a new grid a+b. If any rock types, blocks or con-
nections exist in both grids a and b, the value from b is used, so there are no duplicates. (Technically this is really an
‘operator’ rather than a method.)

Parameters:

• a, b: t2grid
The two grids to be added together.

3.2. t2grid objects 57

PyTOUGH Documentation, Release 1.6.2

add_block(block)

Adds a block to the grid. If another block with the same name already exists, it is replaced.

Parameters:

• block: t2block
Block to be added to the grid.

add_connection(connection)

Adds a connection to the grid. If another connection with the same column names already exists, it is replaced.

Parameters:

• connection: t2connection
Connection to be added to the grid.

add_rocktype(rock)

Adds a rock type to the grid. If another rock type with the same name already exists, it is replaced.

Parameters:

• rock: rocktype
Rock type to be added to the grid.

block_index(blockname)

Returns the block index (in the blocklist list) of a specified block name.

Parameters:

• blockname: string
Name of the block.

blockmap(geo, index = None)

Returns a mapping from the block name list of the specified geometry object to the block names in the grid.

Parameters:

• geo: mulgrid
Geometry object.

• index: list (or None)
Specifies a list of integer indices defining which blocks in the grid to map to. If None, all blocks are mapped to.

58 Chapter 3. TOUGH2 grids

PyTOUGH Documentation, Release 1.6.2

calculate_block_centres(geo)

Calculates geometrical centres of all blocks in the grid, based on the specified geometry object geo.

Parameters:

• geo: mulgrid
Geometry object associated with the grid.

check(fix=False,silent=False)

Checks a grid for errors and optionally fixes them. Errors checked for are: blocks not connected to any other blocks,
and blocks with isolated rocktypes (not shared with any neighbouring blocks). Returns True if no errors were found,
and False otherwise. If fix is True, any identified problems will be fixed. If silent is True, there is no printout
(only really useful if fix is True).

Blocks not connected to any others are fixed by deleting them. Isolated-rocktype blocks are fixed by assigning them
the most popular rocktype of their neighbours. Blocks with large volumes (> 1020 m3) are never considered isolated
(because they often have a special rocktype, such as an atmosphere one, that their neighbours will never share).

Parameters:

• fix: Boolean
Whether to fix any problems identified.

• silent: Boolean
Whether to print out feedback or not.

clean_rocktypes()

Deletes any rock types from the grid which are not assigned to any block.

connection_index(blocknames)

Returns the connection index (in the connectionlist list) of the connection between a specified pair of block names.

Parameters:

• blocknames: tuple
A pair of block names, each of type string.

3.2. t2grid objects 59

PyTOUGH Documentation, Release 1.6.2

copy_connection_directions(geo,grid)

Copies the connection permeability directions for horizontal connections from another grid. It is assumed that both
grids have the same column structure, but may have different layer structures.

Parameters:

• geo: mulgrid
Geometry object associated with the source grid.

• grid: t2grid
The source grid from which the connection permeability directions are to be copied.

delete_block(blockname)

Deletes a block from the grid. This also deletes any connections involving the specified block.

Parameters:

• blockname: string
Name of the block to be deleted from the grid.

delete_connection(connectionname)

Deletes a connection from the grid.

Parameters:

• connectionname: tuple (of string)
Pair of block names identifying the connection to be deleted from the grid.

delete_rocktype(rocktypename)

Deletes a rock type from the grid.

Parameters:

• rocktypename: string
Name of the rock type to be deleted from the grid.

60 Chapter 3. TOUGH2 grids

PyTOUGH Documentation, Release 1.6.2

demote_block(blockname)

Shifts a block (or blocks) to the end of the blocklist. This can be useful for making blocks inactive - by setting their
volumes to zero or negative, and then shifting them to the end of the list (to avoid all blocks below them also being
treated as inactive).

Parameters:

• blockname: string or list of strings
Name(s) of the block(s) to be shifted to the end of the blocklist.

embed(subgrid, connection)

Returns a grid with a subgrid embedded inside one of its blocks. The connection specifies how the two grids are to be
connected: the blocks to be connected and the connection distances, area etc. between them.

Parameters:

• subgrid: t2grid
Subgrid to be embedded.

• connection: t2connection
Connection specifying how the subgrid is to be embedded, including the connection distances and area. The
first block should be the host block, the second the connecting block in the subgrid.

empty()

Empties the grid of all its blocks, rock types and connections.

flux_matrix(geo, blockmap = {})

Takes the grid and a corresponding mulgrid object, and constructs a sparse matrix (of type scipy.sparse.
lil_matrix) which can be used to convert connection flow values on the grid to block-average fluxes (flows per unit
area). Specifically, if an array of connection flow values (one for each connection in the grid) is multiplied by this sparse
matrix, the result is a partitioned array containing the 3-component block-average flux for each of the (non-atmosphere)
blocks.

The method for constructing the matrix is as follows. For each block, a distribution of flux is fitted to agree as closely
as possible with the connection flow values. This distribution is either constant or linear, depending on how many
connections the block has (linear for blocks with at least 6 connections). Fitting the connection values results in a small
linear system to solve, which may be under- or over-determined, depending on the number of connections and the type
of flux distribution. A pseudo-inverse matrix is calculated which will find the least-squares solution of this system.
The total matrix is formed by assembling these matrices for each of the blocks into a global matrix.

Parameters:

• geo: mulgrid
The mulgrid geometry object.

• blockmap: dictionary

3.2. t2grid objects 61

PyTOUGH Documentation, Release 1.6.2

Dictionary mapping the block names in the geometry to the block naming system used in the grid.

fromgeo(geo)

Returns a grid constructed from a mulgrid geometry object. (Any previous contents of the grid are first emptied.)

Parameters:

• geo: mulgrid
The mulgrid geometry object.

incons(values=(101.3e3,20.))

Returns a t2incon initial conditions object for the grid, using the supplied values. Initial conditions can be specified for
only one block, in which case they will be applied to all blocks, or for each block, in an array.

Parameters:

• values: tuple or np.array
Initial conditions values, either a tuple of values for one block, or an np.array with each row containing a set
of values for one block.

minc(volume_fractions, spacing=50., num_fracture_planes=1, blocks=None,
matrix_blockname=None, minc_rockname=None, proximity=None, atmos_volume=1.e25,
incon=None, fracture_connection_distance=0.)

Creates “Multiple Interacting Continua” (MINC) blocks and connections in the grid, for simulating fracture flow with
matrix blocks attached to each fracture block. This has capability similar to that of the GMINC program , or of the
MINC part of TOUGH2’s MESHMAKER section (except that matrix-matrix flow is not supported).

This function returns a rank-2 integer np.arraywith one row for each MINC level, containing the indices of the blocks
for that level. For example, the first row is a list of all fracture block indices, the second is a list of all MINC level 1 block
indices, etc. This can be useful for identifying all blocks in a given MINC level, for plotting or other post-processing.

For example, if the output index array from this method is minc_level, and T is an array of temperatures computed
over the entire MINC grid (e.g. extracted from the element table of a listing file), then the temperatures in MINC level
m are given by:

T[minc_level[m]]

Note that plotting MINC results over a mulgrid geometry can be made easier (particularly for grids that have MINC
applied over only part of the domain) by using the minc_array() method to create the solution vector to plot.

If the incon parameter is specified as a t2incon object (from the original grid), then this method will also return a new
t2incon object for the MINC grid, with values copied from the original.

Fracture blocks retain the same block name as their original porous medium blocks. The naming of matrix blocks can
be controlled using the matrix_blockname parameter.

Parameters:

• volume_fractions: list (or np.array)

62 Chapter 3. TOUGH2 grids

https://www.osti.gov/biblio/6065621

PyTOUGH Documentation, Release 1.6.2

List or array of volume fractions. The first entry corresponds to the fractures, with subsequent entries
specifying the volume fractions for each MINC level. The length of this list or array is therefore equal to one
plus the number of matrix blocks to be used. Entries for all MINC levels must be present, but they need not
sum to 1- if they do not, they will be scaled so that the sum is 1. (This means, for example, that entries may be
specified as percentage values.)

• spacing: float or list (or np.array)
Fracture spacing parameters. If a float value is specified, this is applied to all sets of fracture planes (see
below). If a list or array is specified, each entry is applied to its corresponding set of fracture planes.

• num_fracture_planes: integer
Number of sets of fracture planes (1, 2 or 3).

• blocks: list (or None)
List of blocks or block names, specifying which blocks are to have MINC applied. If this parameter is None, all
blocks are processed (except inactive blocks).

• matrix_blockname: function (or None)
Function returning the name of a MINC matrix block (string), given the original block name (string) and MINC
level (integer > 0). If None, a default function will be used, which simply replaces the first character of the
original block name with the MINC level.

• minc_rockname: function (or None)
Function returning the MINC rocktype name, given the original rocktype name and MINC level (≥ 0). If
None, a default function will be used, which leaves fracture blocks with their original rocktype (the properties
of which can subsequently be edited), and for matrix blocks, simply replaces the first character of the original
rocktype name with ‘X’.

• proximity: function (or None)
Proximity function, returning the total matrix volume within a given distance (float) from the fracture faces. If
None, a default function will be used, corresponding to the num_fracture_planes parameter.

• atmos_volume: float
Maximum block volume for blocks to be considered part of the geometrical grid. Blocks with volume greater
than this will be assumed to be boundary condition blocks and no MINC processing will be applied to them.

• incon: t2incon (or None)
Initial conditions object for the original grid, before MINC processing. If not None, then the method returns (as
well as the block index array) a new t2incon object for the MINC grid, with values for each block copied from
the original (for all MINC levels).

• fracture_connection_distance: float
Connection distance between fracture and matrix blocks. Default is zero, as in MESHMAKER, but in some
situations a finite value (e.g. 10−10 m) can work better.

radial(rblocks, zblocks, convention=0, atmos_type=2, origin=[0,0], justify='r',
case=None, dimension=2, blockmap={}, chars=ascii_lowercase, spaces=True)

Returns a radial TOUGH2 grid with the specified radial and vertical block sizes. Grid column and layer naming
convention, atmosphere type and origin can be specified. The optional justify and case parameters control the
formatting of the character part of the block names.

The dimension parameter sets the flow dimension for “generalized radial flow”, which can represent flow in fractured
rocks and modifies the block volumes and areas. The default dimension = 2 corresponds to standard radial flow.

Parameters:

3.2. t2grid objects 63

https://doi.org/10.1029/WR024i010p01796

PyTOUGH Documentation, Release 1.6.2

• rblocks, zblocks: list (or np.array)
Lists (or arrays) of block sizes in the r and z directions.

• convention: integer
Naming convention for grid columns and layers - same as the naming convention for a mulgrid object.

• atmos_type: integer
Type of atmosphere - also the same as the atmosphere type for a mulgrid object.

• origin: list (or np.array)
Origin of the grid (of length 2 or 3). The first entry is the radial origin, i.e. the starting radius of the grid. The
last entry is the vertical origin, i.e. the vertical position of the top of the grid. If of length 3, the middle entry is
ignored.

• justify: string
Specify ‘r’ for the character part of the block names (first three characters) to be right-justified, ‘l’ for
left-justified.

• case: string
Specify ‘l’ for the character part of the block names (first three characters) to be lower case, ‘u’ for upper case.
Alternatively, use the more flexible chars parameter (see below).

• dimension: float
Dimension for ‘generalized radial flow’, which can take any (possibly non-integer) value between 1 and 3.
Dimension 1 corresponds to flow in a linear ‘pipe’, dimension 2 corresponds to standard radial flow in a
disc-shaped reservoir and dimension 3 corresponds to flow in a spherically symmetric reservoir.

• blockmap: dictionary
Dictionary mapping the block names in the geometry to the block naming system used in the grid.

• chars: string
Specify a string of characters to be used to form the character part of block names. For example, to use both
lowercase and uppercase characters, set chars to ascii_lowercase + ascii_uppercase, or to use
uppercase letters only, specify ascii_uppercase.

• spaces: Boolean
Specify False to disallow spaces in character part of block names. In this case, the first element of the chars
parameter functions like a ‘zero’ and replaces spaces.

Visualization of radial 𝑟 − 𝑧 model grids and results can be done in PyTOUGH by creating a ‘dummy’ vertical slice
rectangular geometry, using the mulgrid rectangular() method, using its 𝑥 direction for radius (and having only one
block in the 𝑦 direction - which is not used). The slice_plot() method can then be used to plot results.

rectgeo(origin_block=None, atmos_volume=1.e25, remove_inactive=False, convention=0,
atmos_type=2, justify='r', chars=ascii_lowercase, spaces=True, layer_snap=0.1,
block_order=None)

Creates a mulgrid geometry object from a rectangular TOUGH2 grid. It also returns a dictionary defining the mapping
from the geometry block names to the grid block names. This block mapping can be used when the block naming
convention used by the original TOUGH2 grid is not compatible with the layer/column based naming conventions
assumed by a mulgrid geometry.

The method works within the following assumptions:

• the grid is in fact rectangular (results will not be predictable otherwise)

• block centre coordinates are present for all blocks in the grid

64 Chapter 3. TOUGH2 grids

PyTOUGH Documentation, Release 1.6.2

• the bottom layer of blocks is complete (no missing blocks)

The method should work on rectangular TOUGH2 grids that have been translated and/or horizontally rotated with
respect to the coordinate axes. Grids with incomplete upper layers (e.g. representing topography) should also be OK.

Parameters:

• origin_block: string, t2block or None
The block on the bottom layer of the geometry, at the origin of the axes defined by permeability directions 1
and 2. If None, it will be detected. Specify it manually if the algorithm does not detect it correctly.

• atmos_volume: float
Block volume below which blocks are considered part of the geometrical grid. Blocks with volume greater than
or equal to this value will be assumed to be boundary condition blocks and will not be represented
geometrically.

• remove_inactive: Boolean
Set True to remove inactive blocks from the geometry. TOUGH2 treats all blocks with zero or negative
volume, and all subsequent blocks in the block list, to be inactive. If this option is used, the inactive blocks will
be used to detect the surface elevations of the columns in the geometry. Otherwise, inactive blocks will be
retained in the geometry.

• convention: integer
Naming convention for grid columns and layers in the output geometry.

• atmos_type: integer
Atmosphere type for the output geometry.

• justify: string
Specify ‘r’ for the character part of the block names (first three characters) to be right-justified, ‘l’ for
left-justified.

• chars: string
Specify a string of characters to be used to form the character part of block names. For example, to use both
lowercase and uppercase characters, set chars to ascii_lowercase + ascii_uppercase, or to use
uppercase letters only, specify ascii_uppercase.

• spaces: Boolean
Specify False to disallow spaces in character part of block names. In this case, the first element of the chars
parameter functions like a ‘zero’ and replaces spaces.

• layer_snap: float
Smallest desired surface block thickness. Set to a positive value to eliminate surface blocks in the geometry
with very small thicknesses (resulting from column surface elevations that are very close to the bottom of a
layer). Default value is 0.1 m. Note that it is not recommended to use a value of zero, as spurious
small-thickness surface blocks can arise from rounding errors in reading the data file. If this still occurs, try
increasing the snap value until they disappear.

• block_order: string or None
Specify None or ‘layer_column’ for default block ordering by layer and column, starting from the atmosphere.
Specify ‘dmplex’ to order blocks by geometrical type (8-node hexahedrons first followed by 6-node wedges) as
in PETSc DMPlex meshes.

3.2. t2grid objects 65

PyTOUGH Documentation, Release 1.6.2

rename_blocks(blockmap = {}, fix_blocknames = True)

Renames blocks in the grid according to the specified block mapping dictionary. Any block whose name is a key of the
block mapping dictionary is renamed with the corresponding dictionary value. Related properties such as connections
are also renamed.

Parameters:

• blockmap: dictionary
Block mapping dictionary, mapping strings to strings.

• fix_blocknames: Boolean
Set True (the default) to ‘fix’ block names in the dictionary, using the fix_blockname() function.

rename_rocktype(rockname, newrockname)

Renames a rock type in the grid. An exception is raised if the specified rocktype name does not exist, or if the new
target rocktype name has already been used.

Parameters:

• rockname: string
Name of the rock type to be renamed.

• newrockname: string
New name for the rock type.

reorder(block_names, connection_names=None, geo=None)

Reorders the blocks (and optionally connections) in the grid.

Parameters:

• block_names: list of string (or None)
List specifying the names of the blocks, in their desired order. Each block name must exist in the grid,
otherwise an error will be raised. If this parameter is None (the default), blocks are not reordered (unless a
geometry is specified instead).

• connection_names: list of string (or None)
List specifying the names of the connections, in their desired order. Each item in the list should be a tuple of
block names. The ordering of the block names in any tuple may be reversed with respect to the original
connection naming. However an error will be raised if any tuple of block names in the list does not exist in the
grid (in either its forward or reverse form). If this parameter is None (the default), connections are not reordered
(unless a geometry is specified instead).

• geo: mulgrid geometry (or None)
Geometry object to use for the reordering. If this is specified, the geometry’s block and connection name lists
are used (and the previous parameters are ignored). After reordering, the grid’s blocks and connections will
have the same ordering as if the grid had been created using the fromgeo() method.

66 Chapter 3. TOUGH2 grids

PyTOUGH Documentation, Release 1.6.2

rocktype_frequency(rockname)

Returns the frequency of use of the rock type with the specified name, i.e. how many blocks are assigned that rock
type.

Parameters:

• rockname: string
Name of the specified rock type.

sort_rocktypes()

Sorts the rocktype list into alphabetical order by name.

write_vtk(geo, filename, wells=False, blockmap = {}, surface_snap=0.1)

Writes a t2grid object to a VTK file on disk, for visualisation with VTK, Paraview, Mayavi etc. The grid is written as
an ‘unstructured grid’ VTK object with data arrays defined on cells. The data arrays written, in addition to the defaults
arrays for the associated mulgrid object, are: rock type index, porosity and permeability for each block. A separate
VTK file for the wells in the grid can optionally be written.

Parameters:

• geo: mulgrid
The mulgrid geometry object associated with the grid. This is required as the t2grid object does not contain
any spatial information, e.g. locations of block vertices.

• filename: string
Name of the VTK file to be written. This is also required.

• wells: Boolean
Set to True if the wells from the mulgrid object are to be written to a separate VTK file.

• blockmap: dictionary
Dictionary mapping the block names in the geometry to the block naming system used in the grid.

• surface_snap: float
Tolerance for specifying how close column surface elevations need to be before being considered “equal” when
constructing surface nodes.

3.3 Other objects (rocktype, t2block and t2connection)

A t2grid object contains lists of other types of objects: rocktype, t2block and t2connection. These classes are
described below.

3.3. Other objects (rocktype, t2block and t2connection) 67

PyTOUGH Documentation, Release 1.6.2

3.3.1 rocktype objects

A rocktype object represents a TOUGH2 rock type. The properties of a rocktype object, and their default values,
are given in the table below.

Table 3: Properties of a rocktype object

Property Type Description Default
capillarity dictionary capillarity function –
compressibility float compressibility 0 m2/N
conductivity float heat conductivity 1.5 W/m/K
density float rock grain density 2600 kg/m3

dry_conductivity float dry heat conductivity wet heat conductivity
expansivity float expansivity 0 K-1

klinkenberg float Klinkenberg parameter 0 Pa-1

nad integer number of extra data lines 0
name string rock type name ‘dfalt’
permeability np.array permeability np.array([10-15]*3) m2

porosity float porosity 0.1
relative_permeability dictionary relative permeability function –
specific_heat float rock grain specific heat 900 J/kg/K
tortuosity float tortuosity factor 0
xkd3 float used by EOS7R 0 m3/kg
xkd4 float used by EOS7R 0 m3/kg

The main familiar properties of a rock type are referred to in a natural way, e.g. the porosity of a rock type r is
given by r.porosity. The permeability property is a 3-element np.array, giving the permeability in each of the
three principal axes of the grid, so e.g. the vertical permeability of a rock type r would normally be given by r.
permeability[2] (recall that array indices in Python are zero-based, so that the third element has index 2).

Some rock type properties are optional, and only need be specified when the property nad is greater than zero. An
example is the relative permeability and capillarity functions that can be specified for a rock type when nad ≥ 2. The
way these functions are specified is described in TOUGH2 data files.

Example:

r = rocktype(name = 'ignim', permeability = [10.e-15, 10.e-15, 2.e-15], specific_heat =␣
→˓850)

declares a rocktype object called r with name ‘ignim’, permeability of 10 mD in the first and second directions and 2
mD in the vertical direction, and specific heat 850 J.kg−1.K−1.

(Note that when declaring rock types, the permeability can for convenience be specified as a list, which will be converted
internally to an np.array.)

68 Chapter 3. TOUGH2 grids

PyTOUGH Documentation, Release 1.6.2

3.3.2 t2block objects

A t2block object represents a block in a TOUGH2 grid. The properties of a t2block object are given in the table
below. These reflect the specifications of a TOUGH2 block as given in a TOUGH2 data file, with the exception of the
atmosphere, centre, connection_name, neighbour_name and num_connections properties.

Table 4: Properties of a t2block object

Property Type Description
ahtx float interface area for heat exchange (TOUGH2 only)
atmosphere Boolean whether block is an atmosphere block or not
centre np.array block centre (optional)
connection_name set names of connections involving the block
nadd integer increment between block numbers in sequence
name string block name
neighbour_name set names of neighbouring (connected) blocks
nseq integer number of additional blocks in sequence
num_connections integer number of connections containing the block
pmx float permeability modifier (TOUGH2 only)
rocktype rocktype rock type
volume float block volume

The atmosphere property determines whether the block is to be treated as an atmosphere block. The centre property
can optionally be used to specify the coordinates of the centre of a block. Block centres are automatically calculated
when a t2grid object is constructed from a mulgrid object using the fromgeo method). The connection_name property
is a set containing the names (as tuples of strings) of all connections involving the block.

A t2block object has no methods.

3.3.3 t2connection objects

A t2connection object represents a connections between two TOUGH2 blocks. The properties of a t2connnection
object are given in the table below. These correspond to the properties of a connection specified in a TOUGH2 data
file. Note that the block property returns t2block objects, not just the names of the blocks in the connection. Hence,
for example, the volume of the first block in a connection object con is given simply by con.block[0].volume.

A t2connection object has no methods.

Table 5: Properties of a t2connection object

Property Type Description
area float connection area
block list two-element list of blocks
dircos float gravity direction cosine
direction integer permeability direction (1, 2, or 3)
distance list two-element list of connection distances
nad1,nad2 integer increments in sequence numbering
nseq integer number of additional connections in sequence
sigma float radiant emittance factor (TOUGH2 only)

3.3. Other objects (rocktype, t2block and t2connection) 69

PyTOUGH Documentation, Release 1.6.2

3.4 Example

The following piece of Python script creates a rectangular 2-D slice TOUGH2 grid with two rock types, and assigns
these rock types to blocks in the grid according to their position along the slice.

from t2grids import *

geo = mulgrid().rectangular([500]*20, [1000], [100]*20, atmos_type = 0, convention = 2)
geo.write('2Dgrd.dat')
grid = t2grid().fromgeo(geo)

grid.add_rocktype(rocktype('greyw', permeability = [1.e-15]*2 + [0.1e-15]))
grid.add_rocktype(rocktype('fill ', permeability = [15.e-15]*2 + [5.e-15]))

for blk in grid.blocklist[1:]:
if 200 <= blk.centre[0] <= 400: blk.rocktype = grid.rocktype['fill ']
else: blk.rocktype = grid.rocktype['greyw']

The first line just imports the required PyTOUGH library. (It is not necessary to import the mulgrids library explicitly,
because it is used and therefore imported by the t2grids library.)

The second block of code creates a rectangular MULgraph geometry object with 20 columns (each 500 m wide) along
the slice and 20 layers (each 100 m thick), writes this to a geometry file on disk, and creates a TOUGH2 grid from it.

Then the two rock types are created, 'greyw' and 'fill '. (Note that rock types are expected by TOUGH2 to have
names 5 characters long, so it is necessary to add spaces to shorter names.)

The final part assigns the rock types to the blocks in the grid. The loop starts from 1 instead of 0, so that the atmosphere
block is skipped. In this example, the blocks in the grid are assigned the 'fill ' rock type if they are between 200 m
and 400 m along the slice. Blocks outside this region are assigned the 'greyw' rock type.

70 Chapter 3. TOUGH2 grids

CHAPTER

FOUR

TOUGH2 DATA FILES

4.1 Introduction

The t2data library in PyTOUGH contains classes and routines for creating, editing and saving TOUGH2 or
AUTOUGH2 data files. It can be imported using the command:

from t2data import *

4.2 t2data objects

The t2data library defines a t2data class, used for representing TOUGH2 data files.

Example:

dat = t2data()

creates an empty t2data object called dat.

dat = t2data(filename)

creates a t2data object called dat and reads its contents from file filename. (It is also possible to read the mesh part
of the t2data object from separate files - see below.)

Because a t2data object contains a large number of different parameters, it is usually easier to load one from an
existing TOUGH2 data file and edit it, rather than creating a new one from scratch.

4.2.1 Properties

The main properties of a t2data object are listed in the table below. In general, each of these properties corresponds
to an input block in a TOUGH2 data file. Most of these input blocks contain a number of different parameters, so that
the t2data property corresponding to each input block is usually in the form of a dictionary, containing a number of
keys representing sub-properties.

For example, the maximum number of time steps for the simulation is controlled by max_timesteps
key in the parameter property, which for a t2data object called dat would be accessed by dat.
parameter['max_timesteps'].

71

PyTOUGH Documentation, Release 1.6.2

Table 1: Properties of a t2data object

Property Type Description Input block
capillarity dictionary capillarity function RELP
diffusion list diffusion coefficients DIFFU
echo_extra_precision Boolean echoing extra precision sections to main data file (AUTOUGH2 only) –
end_keyword string keyword to end file ENDCY or ENDFI
extra_precision list data sections read from extra precision auxiliary file (AUTOUGH2 only) –
filename string file name on disk –
generator dictionary generators (by block name and generator name) GENER
generatorlist list generators (by index) GENER
grid t2grid model grid ELEME, CONNE
history_block list history blocks (TOUGH2 only) FOFT
history_connection list history connections (TOUGH2 only) COFT
history_generator list history generators (TOUGH2 only) GOFT
incon dictionary initial conditions INCON
indom dictionary rocktype-specific initial conditions INDOM
lineq dictionary linear equation solver options (AUTOUGH2 only) LINEQ
meshfilename string or tuple file name(s) on disk containing mesh data –
meshmaker list mesh generation options MESHM
more_option array of integer additional parameter options MOMOP
multi dictionary EOS configuration MULTI
noversion Boolean suppressing printing of version summary NOVER
num_generators integer number of generators –
output_times dictionary times to write output TIMES
parameter dictionary run-time parameters PARAM
relative_permeability dictionary relative permeability function RELP
selection dictionary selection parameters SELEC
short_output dictionary short output (AUTOUGH2 only) SHORT
simulator string simulator name (AUTOUGH2 only) SIMUL
solver dictionary linear equation solver options (TOUGH2 only) SOLVR
start Boolean run initialisation option START
title string simulation title TITLE
type string simulator type (AUTOUGH2 or TOUGH2) –

The details of the t2data properties are as follows.

capillarity property

A dictionary property specifying the capillarity function used, corresponding to the second line of the RPCAP input
block in the TOUGH2 data file. The individual keys of this property are given in the table below.

Table 2: capillarity property keys

Key Type Description TOUGH2 parameter
parameters array (7) of float function parameters CP
type integer type of capillarity function ICP

72 Chapter 4. TOUGH2 data files

PyTOUGH Documentation, Release 1.6.2

diffusion property

A list property specifying diffusion coefficients for each mass component simulated, corresponding to the DIFFU input
block in the TOUGH2 data file. The list has length multi['num_components'] (i.e. NK in TOUGH2 terminology),
and each element is a list of the diffusion coefficients for each component (with length multi['num_phases'], or
NPH).

echo_extra_precision property

A Boolean property (AUTOUGH2 only) governing whether data written to an auxiliary extra-precision file is also
echoed to the main data file. If True, all extra-precision data sections are echoed to the main file.

end_keyword property

A string property containing the keyword used in the data file to end the file. Normally this is ‘ENDCY’, but ‘ENDFI’
can also be used.

extra_precision property

A list property determining which data sections will be written to an auxiliary extra-precision file (AUTOUGH2 only).
Recent versions of AUTOUGH2 support an additional data file containing some data written with extra precision.
Possible extra-precision data sections are ROCKS, ELEME, CONNE, RPCAP and GENER. Typical usage of this extra-
precision data is for automatic model calibration using PEST or similar software, where calculation of derivatives of
model outputs with respect to model parameters requires higher precision than is possible with the standard TOUGH2
data file format.

The extra_precision parameter may be a list containing names of sections to be written in extra precision (e.g.
[‘RPCAP’, ‘GENER’]), or set to False to disable extra precision (equivalent to []), or to True to specify that all
possible sections should be written in extra precision.

The read() method of a t2data object determines whether extra precision data are available by searching for an ad-
ditional file with the same base name as the data file itself, but with a ‘.pdat’ or ‘.PDAT’ extension (depending on the
case of the main data file name). If no such file exists, then no extra precision data will be read.

filename property

A string property containing the name of the TOUGH2 data file on disk. (This does not correspond to any parameter
in the TOUGH2 data file.)

4.2. t2data objects 73

PyTOUGH Documentation, Release 1.6.2

generator property

A dictionary property containing the generators for the simulation, accessed by tuples of block name and generator
name. Each generator is an object of type t2generator.

generatorlist property

A list property containing the generators for the simulation, accessed by index.

grid property

A t2grid object representing the simulation grid, corresponding to the ELEME and CONNE input blocks in a
TOUGH2 data file.

history_block property

A list property containing blocks for which time history output is required, corresponding to the FOFT input block in
a TOUGH2 data file. If the t2data object contains grid data, the items in this list are t2block objects; otherwise, they
are block names (i.e. strings).

history_connection property

A list property containing connections for which time history output is required, corresponding to the COFT input
block in a TOUGH2 data file. If the t2data object contains grid data, the items in this list are t2connection objects;
otherwise, they are tuples of block names (i.e. tuples of strings).

history_generator property

A list property containing blocks in which generators are defined and for which time history output is required, corre-
sponding to the GOFT input block in a TOUGH2 data file. If the t2data object contains grid data, the items in this
list are t2block objects; otherwise, they are block names (i.e. strings).

74 Chapter 4. TOUGH2 data files

PyTOUGH Documentation, Release 1.6.2

incon property

A dictionary property representing the initial conditions for the simulation, accessed by block name, corresponding to
the INCON input block in a TOUGH2 data file. The value of each element of the dictionary is a list consisting of the
porosity of the block, followed by a list of the specified initial primary thermodynamic variables in the block. If the
TOUGH2 NSEQ and NADD values are used, these are stored after the thermodynamic variables. If they are not used,
they can either be set to None or simply omitted.

For example, to specify porosity 0.1 and initial conditions (101.3E3, 20.0) in block 'AB105' of a t2data object called
dat, set dat.incon['AB105'] = [0.1, [101.3e3, 20.0]].

To specify these same conditions but with NSEQ = 10 and NADD = 2, set dat.incon['AB105'] = [0.1, [101.
3e3, 20.0], 10, 2].

Porosity can be specified as None if default porosity (from the rocktype) is to be used.

indom property

A dictionary property representing the initial conditions for the simulation, accessed by rocktype name, corresponding
to the INDOM input block in a TOUGH2 data file. The value of each element of the dictionary is a list consisting of
the specified initial primary thermodynamic variables for the rocktype.

lineq property

A dictionary property representing linear equation solver options, corresponding to the LINEQ input block in an
AUTOUGH2 data file. The individual keys of this property are given in the table below.

Table 3: lineq property keys

Key Type Description AUTOUGH2 parameter
epsilon float solver tolerance EPN
gauss integer Gauss elimination parameter IGAUSS
max_iterations integer max. number of iterations MAXIT
num_orthog integer number of or thogonalisations NORTH
type integer type of solver (1 or 2) ISOLVR

meshfilename property

A string property (or tuple of strings) containing the name(s) of files on disk containing the mesh data. (This does not
correspond to any parameter in the TOUGH2 data file.) Its default value is an empty string which means mesh data
will be read from the main data file.

If meshfilename is a single (non-empty) string, this is interpreted as the name of a formatted text file containing
‘ELEME’ and ‘CONNE’ sections specifying the mesh (e.g. the ‘MESH’ file created by TOUGH2 or TOUGH2_MP).

If meshfilename is a tuple of two strings, these are interpreted as the names of two binary files containing the mesh
data, e.g. the ‘MESHA’ and ‘MESHB’ files created by TOUGH2_MP.

4.2. t2data objects 75

PyTOUGH Documentation, Release 1.6.2

meshmaker property

A list property representing mesh generation options, corresponding to the MESHM input block in a TOUGH2 data
file. For more detail on the use of MESHM data, consult the TOUGH2 users’ guide.

The MESHM data may contain multiple sections (e.g. creation of a rectilinear XYZ grid followed by MINC process-
ing), so the meshmaker property is structured as a list of two-element tuples, each containing the type of section (rz2d,
xyz or minc) followed by the section data itself.

The form of the section data varies depending on the section type. For the rz2d type it is also structured as a list, as
these types may contain variable numbers of sub-sections. (For example, data for the rz2d type may contain multiple
logar sub-sections for different logarithmic radial parts of the mesh.) Each sub-section is again a two-element tuple,
consisting of the sub-section type (a string) followed by a dictionary containing the data for the sub-section.

Data for the xyz type are also structured as a list, with the first element containing the stand-alone deg parameter (a
float), followed by the other sub-sections, corresponding to the NX, NY and NZ sub-sections in the TOUGH2 data file.
The minc type does not have sub-sections so MINC data are not structured as a list but simply a dictionary.

Possible sub-section types for rz2d data are radii, equid, logar and layer, corresponding to their (uppercase)
keyword counterparts in the TOUGH2 data file. Data keys for these types are given in the rz2d data keys table. Data
keys for the xyz and minc data are given in xyz data keys and minc data keys tables.

Example: The easiest way to understand how the meshmaker property works is to read some example input data into a
t2data object and examine the result. The MESHM data for the standard TOUGH2 test problem ‘rhbc’ (‘Production
from a geothermal reservoir with hypersaline brine’) is represented as a t2data meshmaker property as follows:

[('rz2d',[
('radii', {'radii': [5.0]}),
('equid', {'dr': 2.0, 'nequ': 1}),
('logar', {'rlog': 100.0, 'nlog': 50}),
('logar', {'rlog': 1000.0, 'nlog': 20}),
('equid', {'dr': 0.0, 'nequ': 1}),
('layer', {'layer': [500.0]})
])
]

Table 4: rz2d data keys

Sub-section Key Type Description TOUGH2 parameter
radii radii list specified mesh radii RC
equid dr float radial increment DR

nequ integer number of equidistant radii NEQU
logar dr float reference radial increment DR

nlog integer number of logarithmic radii NLOG
rlog float largest radius RLOG

layer layer list layer thicknesses H

Table 5: xyz data keys

Key Type Description TOUGH2 parameter
deg float angle between y-axis and horizontal DEG
del float constant grid increment DEL
deli list variable grid increments DEL
no integer number of grid increments DR
ntype string axis direction (‘NX’, ‘NY’ or ‘NZ’) NTYPE

76 Chapter 4. TOUGH2 data files

PyTOUGH Documentation, Release 1.6.2

Table 6: minc data keys

Key Type Description TOUGH2 parameter
dual string treatment of global matrix-matrix flow DUAL
num_continua integer number of interacting continua J
spacing list fracture spacings PAR
type string proximity function type TYPE
vol list volume fractions VOL
where string direction of volume fraction specification WHERE

more_option property

An array property containing additional integer parameter options, corresponding to the MOMOP input block in
a TOUGH2 data file (it is not recognised by AUTOUGH2). Introduced by iTOUGH2, this is an extension of the
parameter.option property. It is of length 21 and is populated with zeros by default. Like the parameter.option
property, values are accessed using 1-based (not zero-based) indices.

multi property

A dictionary property selecting the equation of state (EOS) module used and setting associated parameters, correspond-
ing to the MULTI input block in a TOUGH2 or AUTOUGH2 data file. The individual keys of this property are given
in the table below.

Table 7: multi property keys

Key Type Description TOUGH2 param-
eter

eos string EOS name (AUTOUGH2 only) NAMEOS
num_components inte-

ger
number of components NK

num_equations inte-
ger

number of equations NEQ

num_inc inte-
ger

number of mass components in INCON data
(TOUGH2 only)

NKIN

num_phases inte-
ger

number of phases NPH

num_secondary_parametersinte-
ger

number of secondary parameters NB

4.2. t2data objects 77

PyTOUGH Documentation, Release 1.6.2

noversion property

A Boolean property specifying whether to suppress printing of version and date information, corresponding to the
NOVER input block in a TOUGH2 data file.

num_generators property

A read-only integer property returning the number of generators.

output_times property

A dictionary property specifying the times at which model output is required, corresponding to the TIMES input block
in a TOUGH2 data file. The individual keys of this property are given in the table below.

Table 8: output_times property keys

Key Type Description TOUGH2 parameter
max_timestep float maximum time step DELAF
num_times_specified integer number of times specified ITI
num_times integer total number of times ITE
time list of float times at which output is required TIS
time_increment float time increment after specified times TINTER

parameter property

A dictionary property specifying run-time parameters, corresponding to the PARAM input block in a TOUGH2 data
file. The individual keys of this property are given in the table below.

The option parameter (MOP array in TOUGH2) is an array of 24 integers, and has a 1-based index so that its indices
are the same as those in the TOUGH2 documentation. (In fact it is really zero-based, like all other Python arrays, but
has an extra unused zeroth element).

78 Chapter 4. TOUGH2 data files

PyTOUGH Documentation, Release 1.6.2

Table 9: parameter property keys

Key Type Description TOUGH2 parame-
ter

absolute_error float absolute convergence tolerance RE2
be float enhanced vapour diffusion BE
const_timestep float time step length DELTEN
default_incons list of float default initial conditions DEP
derivative_incrementfloat numerical derivate increment factor DFAC
diff0 float diffusive vapour flux (AUTOUGH2 only) DIFF0
gravity float gravitational acceleration GF
max_duration integer maximum simulation duration (machine sec-

onds)
MSEC

max_iterations integer maximum number of iterations per time step NOITE
max_timesteps integer maximum number of time steps MCYC
max_timestep float maximum time step size DELTMX
newton_weight float Newton-Raphson weighting factor WNR
option array(24) of inte-

ger
simulation options MOP

pivot float pivoting parameter for linear solver U
print_block string block name for short printout ELST
print_interval integer time step interval for printing MCYPR
print_level integer amount of printout KDATA
relative_error float relative convergence tolerance RE1
scale float grid scale factor SCALE
texp float binary diffusion temperature parameter TEXP
timestep_reduction float time step reduction factor REDLT
timestep list of float specified time step sizes DLT
tstart float start time (seconds) TSTART
tstop float stop time TIMAX
upstream_weight float upstream weighting factor WUP

relative_permeability property

A dictionary property specifying the relative permeability function used, corresponding to the first line of the RPCAP
input block in the TOUGH2 data file. The individual keys of this property are given in the table below.

Table 10: relative_permeability property keys

Key Type Description TOUGH2 parameter
parameters array (7) of float function parameters RP
type integer type of relative permeability function IRP

4.2. t2data objects 79

PyTOUGH Documentation, Release 1.6.2

selection property

A dictionary property representing selection parameters for the simulation (only used by some EOS modules, e.g.
EOS7, EOS7R, EWASG), corresponding to the SELEC block in the TOUGH2 data file.

The dictionary contains two keys: ‘integer’ and ‘float’, the first of which accesses a list of the integer selection parame-
ters (the first line of the SELEC block), while the second accesses a list of the float selection parameters (the remaining
lines of the SELEC block).

short_output property

A dictionary property representing blocks, connections and generators for which short output is required, corresponding
to the SHORT input block in an AUTOUGH2 data file.

The dictionary contains four keys: ‘frequency’, ‘block’, ‘connection’ and ‘generator’. The last three of these access
lists of blocks, connections and generators respectively for short output. (Note that each of these lists contains t2block,
t2connection or t2generator objects, rather than names.) The ‘frequency’ key accesses the time step frequency (an
integer) for which short output is required.

simulator property

A string property specifying the type of simulator, corresponding to the SIMUL input block in an AUTOUGH2 data
file.

solver property

A dictionary property representing linear equation solver options, corresponding to the SOLVR input block in a
TOUGH2 data file. The individual keys of this property are given in the table below.

Table 11: solver property keys

Key Type Description TOUGH2 parameter
closure float convergence criterion CLOSUR
relative_max_iterations float relative max. number of iterations RITMAX
type integer solver type MATSLV
o_precond string O -preconditioning type OPROCS
z_precond string Z -preconditioning type ZPROCS

80 Chapter 4. TOUGH2 data files

PyTOUGH Documentation, Release 1.6.2

start property

A Boolean property specifying whether the flexible start option is used, corresponding to the START input block in a
TOUGH2 data file.

title property

A string property containing the simulation title, corresponding to the TITLE input block in a TOUGH2 data file.

type property

A string property specifying the simulator type (‘AUTOUGH2’ or ‘TOUGH2’). Changing the value of this property
will cause one of the convert_to_TOUGH2() or convert_to_AUTOUGH2() methods to be executed, with default method
parameters. Hence, changing the type property to ‘AUTOUGH2’ causes the EOS to be set to the default ‘EW’. It is
also not possible to specify TOUGH2_MP options when setting type. For more control over how the conversion is
carried out, use the conversion methods directly instead of setting type.

4.2.2 Functions for reading data from file

It is possible to specify customized functions to control how data are read from a TOUGH2 data file. This is done
using the optional read_function parameter when a t2data object is created- in exactly the same way it is done for
a mulgrid object. For more details, see the corresponding documentation for mulgrid objects. By default, the read
functions for t2data objects are given by the default_read_function dictionary.

4.2.3 Methods

The main methods of a t2data object are listed in the table below.

Table 12: Methods of a t2data object

Method Type Description
add_generator – adds a generator
clear_generators – deletes all generators
convert_to_AUTOUGH2 – converts from TOUGH2 input to AUTOUGH2
convert_to_TOUGH2 – converts from AUTOUGH2 input to TOUGH2
delete_generator – deletes a generator
delete_orphan_generators – deletes orphaned generators
effective_incons list or t2incon effective initial conditions
generator_index integer returns index of generator with specified name and block name
json dictionary Waiwera JSON input
read t2data reads data file from disk
rename_blocks – renames blocks
run – runs a TOUGH2 simulation
specific_generation np.array generation per unit volume in each block
total_generation np.array total generation in each block
transfer_from – transfers data from another
write – writes to data file on disk

4.2. t2data objects 81

PyTOUGH Documentation, Release 1.6.2

Details of these methods are as follows.

add_generator(generator)

Adds a generator to the data file object.

Parameters:

• generator: t2generator
Generator to be added to the data file object.

convert_to_AUTOUGH2(warn=True, MP=False, simulator='AUTOUGH2.2', eos='EW')

Converts a TOUGH2 (or TOUGH2_MP) data file for use with AUTOUGH2. Various parameter options are altered
to try to make the AUTOUGH2 simulation give similar results to the original TOUGH2 simulation. If necessary, the
filename property is changed to end in ‘.dat’ (or ‘.DAT’, depending on the case of the base file name), as required by
AUTOUGH2.

The simulator and EOS name can also be specified, as AUTOUGH2 data files contain this information in the SIMUL
and MULTI sections.

Parameters:

• warn: Boolean
If True, warnings will be printed regarding TOUGH2 options used in the original data file which are not
supported in AUTOUGH2.

• MP: Boolean
if True, treats the original t2data object as a TOUGH2_MP data file, which uses some of the parameters
differently (e.g. MOP(20)).

• simulator: string
Simulator name, used for the leading part of the AUTOUGH2 SIMUL data section. Possible values are
‘MULKOM’, ‘TOUGH2’, ‘TOUGH2.2’, ‘AUTOUGH2’ and ‘AUTOUGH2.2’.

• eos: string
EOS name, used for the trailing part of the AUTOUGH2 SIMUL data section (e.g. ‘EW’, ‘EWC’, ‘EWA’,
‘EWAV’ etc.)

convert_to_TOUGH2(warn=True, MP=False)

Converts an AUTOUGH2 data file for use with TOUGH2 (or compatible simulators such as TOUGH2_MP). Various
parameter options are altered to try to make the TOUGH2 simulation give similar results to the original AUTOUGH2
simulation. This particularly affects AUTOUGH2 options related to backward compatibility with MULKOM. In partic-
ular, if these are used then the heat conductivities in the ROCKS block have to be altered to give the same results. Data
blocks specific to AUTOUGH2 (e.g. SIMULATOR, LINEQ, and SHORT) are removed, and AUTOUGH2-specific
generator types are converted to their TOUGH2 equivalents if possible, or otherwise deleted.

Parameters:

• warn: Boolean

82 Chapter 4. TOUGH2 data files

PyTOUGH Documentation, Release 1.6.2

If True, warnings will be printed regarding AUTOUGH2 options used in the original data file which are not
supported in TOUGH2.

• MP: Boolean
if True, converts to a TOUGH2_MP data file, which treats some of the parameters differently (e.g. MOP(20)).
The filename property is also changed to INFILE, as required by TOUGH2_MP.

clear_generators()

Deletes all generators from the data file object.

delete_generator(blocksourcenames)

Deletes the generator with the specified block and generator (source) name, if it exists.

Parameters:

• blocksourcenames: tuple
Tuple of block name and generator name (both strings) of the generator to be deleted.

delete_orphan_generators()

Deletes all generators with block names that are not in the grid.

effective_incons(incons = None)

Returns effective initial conditions, based on on the specified initial conditions in combination with any initial conditions
specified in the t2data object itself – whether as default initial conditions specified via the parameter property, or via
the incon property, or the indom property (or any combination of these).

Any indom specifications override the defaults in the parameter property. Values in the incon property override both
the defaults and values in indom. Finally, values passed into this method via the incons parameter override any other
specifications. Note that any of these may contain incomplete specifications (i.e. values are not specified for all blocks
in the grid).

If only default homogeneous initial conditions are in effect, then a list of the primary variables is returned. Otherwise,
a t2incon object is returned with initial conditions values for every block.

Parameters:

• incons: t2incon or None
Initial conditions object, usually representing the contents of a separate initial conditions file.

4.2. t2data objects 83

PyTOUGH Documentation, Release 1.6.2

generator_index(blocksourcenames)

Returns the index (in the generatorlist list) of the generator with the specified block and generator name.

Parameters:

• blocksourcenames: tuple
Tuple of block name and generator name (both strings) of the generator.

json(geo, mesh_filename, atmos_volume = 1.e25, incons = None, eos = None, bdy_incons =
None, mesh_coords = 'xyz')

Returns a JSON dictionary representing the contents of the t2data object (and associated mesh geometry), suitable
for input to the Waiwera simulator.

Sources in the Waiwera JSON dictionary are given names based on the corresponding TOUGH2 generator names.
If the TOUGH2 model has no duplicate generator names, these are used directly for the source names. If there are
duplicate generator names, the block names are prepended to the generator names to form the source names. If there
are duplicate generator names within the same block, the source names will have “_1”, “_2” etc. appended to them as
needed to make them unique.

Parameters:

• geo: mulgrid
Geometry object. Note that geometric meshes with column surface elevations that do not correspond to layer
elevations are not supported in Waiwera. For meshes of this type, the column surface elevations can be
“snapped” to layer elevations using the snap_columns_to_nearest_layers() method. In that case the t2grid in
the t2data object must be updated so it corresponds to the snapped mesh geometry, and other parts of the data
file updated to reference the new mesh (e.g. using the transfer_from() method). The geometry’s block_order
property should be set to ‘dmplex’, particularly if it contains mixtures of 3- and 4-sided columns.

• mesh_filename: string
The filename of the mesh file (e.g. ExodusII or GMSH mesh) for the Waiwera simulation.

• atmos_volume: float
Maximum block volume for blocks to be considered part of the geometric grid. Blocks with volume greater
than this value (or zero) will be treated as boundary condition (e.g. atmosphere) blocks rather than part of the
simulation mesh.

• incons: t2incon, string, or None
Initial conditions for the Waiwera model. If specified as a string, this should be the filename of the Waiwera
HDF5 output file for restarting the simulation from the output of a previous run. If None is specified, then
default initial conditions will be applied from the parameter property.

• eos: string, integer or None
Equation of state used for the simulation. For AUTOUGH2 simulations, this can generally be set to None, and
the EOS will be read from the t2data simulator or multi properties. Otherwise, it can be specified as an
integer corresponding to the EOS number (1 being pure water, 2 being water / CO2 etc.) or as a string
corresponding to the AUTOUGH2 EOS names (EOS1 being ‘EW’, EOS2 being ‘EWC’ etc.). Note that for
integer values, only EOS modules 1, 2 and 4 are supported. For AUTOUGH2 EOS names, these correspond to
‘W’, ‘EW’, ‘EWC’ and ‘EWAV’. The AUTOUGH2 passive tracer EOS modules ‘EWT’ and ‘ETD’ are also
supported (the latter supporting only constant diffusivity, i.e. all elements of the diffusion property must be
negative and equal).

• bdy_incons: t2incon, or None

84 Chapter 4. TOUGH2 data files

http://waiwera.github.io

PyTOUGH Documentation, Release 1.6.2

TOUGH2 initial conditions from which boundary conditions are to be derived. In many cases this parameter is
not needed, because boundary conditions are taken from the incons parameter: if the incons parameter is
specified as a t2incon object, then the bdy_incons parameter can be set to None. If, however, incons is a
string or None, then it will not contain boundary condition data, in which case boundary conditions can be
specified by passing a t2incon object as the bdy_incons parameter; otherwise, if this is set to None then
default boundary conditions will be applied from the default initial conditions in the t2data parameter
property. Faces on which to apply boundary conditions are identified by the presence of connections to blocks
with either zero or large volume (above the volume specified by the atmos_volume parameter). Note that for
side boundary conditions (with horizontal connections), the boundary blocks must have centres defined,
otherwise it is not possible to calculate the appropriate normal vector for the boundary condition.

• mesh_coords: string
String representing the coordinate system to be used in the Waiwera model. 3-D Cartesian meshes are
identified as ‘xyz’. 2-D Cartesian meshes may be identified as either ‘xy’, ‘xz’, or ‘yz’ (depending on
orientation), while 2-D radial meshes are identified as ‘rz’.

read(filename, meshfilename='')

Reads a t2data object from a TOUGH2 data file on disk. The mesh data may optionally be read from auxiliary files,
if it is not present in the main data file. (Note that if the main data file does contain mesh information (the ‘ELEME’
and ‘CONNE’ sections), any auxiliary mesh files will not be read.)

Parameters:

• filename: string
Name of the TOUGH2 data file to be read.

• meshfilename: string or tuple
Name of separate mesh file(s) to read, containing element and connection data. If empty, then mesh data will
be read from the main data file. If a non-empty string is given, this is interpreted as the name of a formatted text
file containing ‘ELEME’ and ‘CONNE’ data sections (as in the ‘MESH’ files created by TOUGH2 and
TOUGH2_MP). If a tuple of two filenames is given, these are interpreted as the names of the two binary
MESHA and MESHB files used by TOUGH2_MP.

Note that it is possible to create a t2data object and read its contents in from disk files in one step, e.g.: dat =
t2data(filename,meshfilename).

rename_blocks(blockmap={}, invert=False, fix_blocknames = True)

Renames blocks in the model according to the specified block mapping dictionary. Any block whose name is a key of
the block mapping dictionary is renamed with the corresponding dictionary value. The blocks in the t2grid object are
renamed using its own rename_blocks() method. Other t2data properties such as generators, initial conditions and
history specifications are similarly renamed.

Parameters:

• blockmap: dictionary
Block mapping dictionary, mapping strings to strings.

• invert: Boolean
Set True to invert the block mapping dictionary, i.e. to map its values to its keys. This can be used, for
example, to rename the blocks to correspond to a geometry created using the t2grid rectgeo() method, via the
block mapping dictionary also created by that method.

4.2. t2data objects 85

PyTOUGH Documentation, Release 1.6.2

• fix_blocknames: Boolean
Set True (the default) to ‘fix’ block names in the dictionary, using the fix_blockname() function.

run(save_filename='', incon_filename='', simulator='AUTOUGH2_2', silent=False,
output_filename='')

Runs an AUTOUGH2 or TOUGH2 (but not TOUGH2_MP) simulation using the data file corresponding to a t2data
object. The contents of the t2data object must first have been written to disk using the write function. If the file
names for the save file or initial conditions file are not specified, they are constructed by changing the file extension of
the data file name. The name of the TOUGH2 executable can be specified.

For running TOUGH2 (rather than AUTOUGH2), the name of the TOUGH2 executable must be specified via the
simulator parameter. However, the save_filename and incon_filename parameters do not need to be specified.
Initial conditions will be read from the file INCON and final results written to SAVE. The listing file name will be the
same as the data file name, but with the extension changed to *.listing, unless the output_filename is specified.

Running TOUGH2_MP is generally done via MPI rather than directly, and the exact syntax for doing so may vary with
different implementations of MPI (OpenMPI, MPICH2 etc.) It is also necessary to specify the number of processors
to use. However it is still possible to run TOUGH2_MP from a Python script using a system call, e.g.:

from os import system
system("mpirun -np 16 t2eos1_mp")

Parameters:

• save_filename: string
Name of the save file to be written to disk during the simulation (AUTOUGH2 only). Default is ‘base.save’
where the AUTOUGH2 data file name is ‘base.dat’.

• incon_filename: string
Name of the initial conditions file for the simulation (AUTOUGH2 only). Default is ‘base.incon’ where the
AUTOUGH2 data file name is ‘base.dat’.

• simulator: string
Name of the AUTOUGH2 or TOUGH2 executable. Default is ‘AUTOUGH2_2’.

• silent: Boolean
Set to True to suppress output to the display while running (default is False).

• output_filename: string
Name of the output listing file for the simulation (TOUGH2 only). Default is ‘base.listing’ where the base
name of the TOUGH2 data file (without file extension) is ‘base’.

86 Chapter 4. TOUGH2 data files

PyTOUGH Documentation, Release 1.6.2

specific_generation(type='MASS', name='')

Returns an np.array containing the total specific generation rate in each block (i.e. generation rate per unit volume)
for the specified generator type and name.

Parameters:

• type: string
Generation type (‘HEAT’, ‘MASS’ etc.) – default is ‘MASS’.

• name: string
Regular expression to match generator names (e.g. ‘SP. . . ’ (or ‘^SP’) will match all generators with names
beginning with ‘SP’.)

transfer_from(source, sourcegeo, geo, top_generator=[], bottom_generator=[],
sourceinconfilename='', inconfilename='', rename_generators=False,
preserve_generation_totals=False)

Transfers data from another t2data object, and its associated mulgrid object. Parameters, rock types and rock type
assignments, and optionally initial conditions files are transferred. In general the data for a given block in the geometry is
found by identifying the nearest block in the source geometry and transferring data from that block. There are, however,
exceptions, such as for generators that need to remain on the surface or bottom of the model. The top_generator and
bottom_generator lists specify the ‘layer’ part of the generator name for generators that should remain on the top or
bottom of the model, respectively.

For generator types in which the gx and rate properties represent generation rates (as opposed to other types for
which these properties are used to represent other things, e.g. productivity index for wells on deliverability), the
values of gx and rate are scaled to account for the different volume of the block the generator has been mapped
into. If preserve_generation_totals is True, and a generator with generation rate 𝐺 is mapped into 𝑛 blocks
with volumes 𝑉1, 𝑉2, . . . , 𝑉𝑛, then the generation rate for the new generator in block 𝑖 will be 𝐺𝑉𝑖/

∑︀𝑛
𝑘=1 𝑉𝑘. This

should preserve the total generation rate over the model. (For generator types matching the bottom_generator or
top_generator specifications, the column area instead of the block volume is used to determine the appropriate
scaling.) Note that of the columns a top or bottom generator is mapped into, only those with centres inside the source
geometry are included in the scaling calculations. The generator types for which this scaling is carried out are: ‘AIR’,
‘COM1’, ‘COM2’, ‘COM3’, ‘COM4’, ‘COM5’, ‘HEAT’, ‘MASS’, ‘NACL’, ‘TRAC’ and ‘VOL’.

If both sourceinconfilename and inconfilename are specified, a new initial conditions file with filename
inconfilename is written to disk, with initial conditions transferred from the file sourceinconfilename.

Parameters:

• source: t2data
The t2data object to transfer data from.

• sourcegeo: mulgrid
The mulgrid object corresponding to source.

• geo: mulgrid
The mulgrid object corresponding to the destination t2data object.

• top_generator: list
A list of generator ‘layer’ identifier strings for generators that need to be kept at the top of the model (e.g. rain
generators).

• bottom_generator: list

4.2. t2data objects 87

PyTOUGH Documentation, Release 1.6.2

A list of generator ‘layer’ identifier strings for generators that need to be kept at the bottom of the model (e.g.
basement heat and mass inputs).

• sourceinconfilename: string
Name of the (optional) initial conditions file to transfer initial conditions data from (corresponding to source).

• inconfilename: string
Name of the (optional) initial conditions file to write, corresponding to the destination t2data object.

• rename_generators: Boolean
If False, generators other than those at the top and bottom of the model retain their original names. Otherwise,
they will be renamed according to their column names in the new grid.

• preserve_generation_totals: Boolean
If False (the default), the transfer of generators will attempt to preserve the distribution of specific generation
of the original model; otherwise, it will attempt to preserve the total generation over the model.

total_generation(type='MASS', name='')

Returns an np.array containing the total generation rate in each block for the specified generator type and name.

Parameters:

• type: string
Generation type (‘HEAT’, ‘MASS’ etc.) – default is ‘MASS’.

• name: string
Regular expression to match generator names (e.g. ‘SP. . . ’ (or ‘^SP’) will match all generators with names
beginning with ‘SP’.)

write(filename='', meshfilename='', extra_precision=None, echo_extra_precision=None)

Writes a t2data object to a TOUGH2 data file on disk. If the meshfilename parameter is used, mesh information
can be written to auxiliary mesh files.

Parameters:

• filename: string
Name of the TOUGH2 data file to be written. If no file name is specified, the object’s own filename property
is used.

• meshfilename: string or tuple
Name of auxiliary mesh file(s) to be written. If this is empty (the default), the object’s own meshfilename
property is used. Otherwise, if a single (non-empty) string is given, this in interpreted as the name of a file to
write formatted mesh information to (as in the ‘MESH’ files produced by TOUGH2 and TOUGH2_MP). If a
tuple of two strings is given, this in interpreted as the names of two binary files (as in the ‘MESHA’ and
‘MESHB’ files produced by TOUGH2_MP).

• extra_precision: list or Boolean
Controls whether to write extra precision data to auxiliary file (AUTOUGH2 only). If set to True, then all
possible sections will be written to the extra precision file. Currently the possible extra-precision sections are
the ROCKS, ELEME, CONNE, RPCAP and GENER sections. If set to False or [], then no extra-precision
data will be written. If set to a list of section names (e.g. [‘RPCAP’, ‘GENER’]), then only those sections will

88 Chapter 4. TOUGH2 data files

PyTOUGH Documentation, Release 1.6.2

be written in extra precision. If set to None (the default), then the value of the data object’s extra_precision
property is used. Otherwise, the value of this property is overwritten by the value specified here.

• echo_extra_precision: Boolean or None
Controls whether to echo all extra-precision data sections to the main data file (AUTOUGH2 only). If None,
the value of the data object’s echo_extra_precision property is used. Otherwise, the value of this property
is overwritten by the value specified here.

4.3 t2generator objects

A t2generator object represents a generator in a TOUGH2 simulation (i.e. an item in the generation table). The
properties of a t2generator object are given in the table below. These correspond closely to the parameters specified
in the TOUGH2 GENER input block. A t2generator object has no methods.

Table 13: Properties of a t2generator object

Property Type Description TOUGH2 parameter
block string name of block containing the generator EL, NE
enthalpy list of float generation enthalpies (|ltab|>1, itab<>”) F3
ex float enthalpy for injection EX
gx float generation rate (or productivity index for deliverability) GX
hg float layer thickness for deliverability HG
fg float separator pressure/ injectivity etc. FG
itab string blank unless table of specific enthalpies specified ITAB
ltab integer number of generation times (or open layers for deliverability) LTAB
nadd integer successive block increment NADD
nads integer successive generator increment NADS
name string generator name SL, NS
nseq integer number of additional generators NSEQ
rate list of float generation rates (|ltab|>1) F2
time list of float generation times (|ltab|>1) F1
type string generator type (default ‘MASS’) TYPE

4.4 Example

The following piece of Python script opens a MULgraph geometry file and TOUGH2 data file, changes some TOUGH2
run-time parameters and assigns heat generators to the blocks in the bottom layer inside a defined area, with the specified
total heat divided uniformly amongst the generators.

geo = mulgrid('gmodel.dat')
dat = t2data('model.dat')

dat.parameter['max_timesteps'] = 300
dat.parameter['print_interval'] = dat.parameter['max_timesteps']/10
dat.parameter['option'][16] = 5 # time step control

dat.clear_generators()
totalheat = 10.e6

(continues on next page)

4.3. t2generator objects 89

PyTOUGH Documentation, Release 1.6.2

(continued from previous page)

layer = geo.layerlist[-1] # bottom layer
cols = [col for col in geo.columnlist if 10.e3 <= col.centre[0] <= 20.e3]
totalarea = sum([col.area for col in cols])
q = totalheat / totalarea

for col in cols:
blockname = geo.block_name(layer.name, col.name)
gen = t2generator(name = ' q'+col.name, block = blockname, type = 'HEAT', gx = q*col.

→˓area)
dat.add_generator(gen)

dat.write()

90 Chapter 4. TOUGH2 data files

CHAPTER

FIVE

TOUGH2 INITIAL CONDITIONS

5.1 Introduction

The t2incons library in PyTOUGH contains classes and routines for reading, editing and writing TOUGH2 initial
conditions and files. It can be imported using the command:

from t2incons import *

The initial conditions files used by TOUGH2 and AUTOUGH2 have the same format. PyTOUGH also supports
TOUGHREACT initial conditions files, which have a slightly different format – permeabilities are included for each
block, and timing information at the bottom of the file is formatted differently.

5.2 t2incon objects

The t2incons library defines a t2incon class, used for representing TOUGH2 initial conditions.

Example:

inc = t2incon()

creates an empty t2incon object called inc.

inc = t2incon(filename)

creates a t2incon object called inc and reads its contents from file filename.

5.2.1 Properties

The main properties of a t2incon object are listed in the table below. Once a set of initial conditions is loaded
into a t2incon object, conditions for individual blocks can be accessed by block name or index. For example, for a
t2incon object inc, the initial conditions in block ‘blockname’ are given simply by inc[blockname]. This returns
a t2blockincon object. Similarly, inc[i] returns the initial conditions at the block with (zero-based) index i.

Each column in the initial conditions file can be accessed by adding an integer (zero-based) index after the
t2blockincon object, so for example:

t = inc['aa 20'][1]

assigns the variable t the value of the second primary thermodynamic variable (index 1) in block 'AA 20'. Initial
conditions can be edited in a similar way, for example:

91

PyTOUGH Documentation, Release 1.6.2

inc['aa 20'][0] = p

assigns the value of p to the first primary variable (usually pressure) in block 'AA 20'. For convenience, initial
conditions for a given block can also be specified as a simple list or tuple of values, for example:

inc['ab 25'] = (101.3e5,25.0)

sets the initial conditions at block 'ab 25' to the specified values. This will work even if no initial conditions have
been previously specified for the given block.

An np.array of the values of the variables at all blocks can be found from the variable property. For example:

inc.variable[:,2]

returns an np.array of the third variable (index 2) in each block. The variable property can also be set to a given
array. Note, however, that the whole array must be set, not just part of it. For example, adding an offset P0 to all
pressures (variable 0) in the initial conditions could be done by:

v = inc.variable
v[:,0] += P0
inc.variable = v

The porosity property may be set to assign values of porosity to all blocks. The assigned value may be an np.array
with a value for each block, or a scalar float (in which case the same value is assigned to all blocks), or None which
assigns the value in each block to None.

Similarly, for TOUGHREACT initial conditions files, the permeability property can be used to read or assign per-
meabilities for all blocks. When assigning this property, the value can be an np.array of shape (num_blocks, 3), (i.e.
a row for each block), or a single np.array with 3 elements, to be applied to all blocks, a single scalar float (to assign
isotropic permeabilities to all blocks) or None which assigns None to all block permeabilities.

The timing property of a t2incon object contains the optional timing information at the end of the file. This is a
dictionary property with keys 'kcyc', 'iter', 'nm', 'tstart' and 'sumtim', corresponding to the values stored
on this line.

The simulator string property is ‘TOUGH2’ by default, and is set to ‘TOUGHREACT’ if permeabilities are detected
while reading from file. Setting this property back to ‘TOUGH2’ will cause the file to be written out in TOUGH2
format (no permeabilities, and different format for timing information) if the write() method is executed.

Table 1: Properties of a t2incon object

Property Type Description
blocklist list ordered list of block names in the initial conditions file
num_blocks integer number of blocks at which conditions are specified
num_variables integer number of thermodynamic variables specified at each block
permeability np.array array of permeability values specified at each block (TOUGHREACT only)
porosity np.array array of porosity values specified at each block
simulator string simulator type (‘TOUGH2’ or ‘TOUGHREACT’)
timing dictionary additional timing information for restarting
variable np.array two-dimensional array of thermodynamic variable values at each block

92 Chapter 5. TOUGH2 initial conditions

PyTOUGH Documentation, Release 1.6.2

Functions for reading data from file

It is possible to specify customized functions to control how data are read from a TOUGH2 initial conditions file. This
is done using the optional read_function parameter when a t2incon object is created- in exactly the same way it is
done for a mulgrid object. For more details, see the corresponding documentation for mulgrid objects. By default,
the read functions for t2incon objects are given by the fortran_read_function dictionary.

Specifying the number of primary variables

Most common TOUGH2 EOS modules have no more than four primary variables, in which case the variables for a
given block all fit on one line in the initial conditions file. However, some EOS modules (e.g. EOS7c and EOS7r)
have more than four primary variables. For these, the variables for a given block are specified over multiple lines in the
initial conditions file.

In this case, it is not possible for PyTOUGH to reliably detect the number of primary variables, as it does when there
are no more than four variables. Instead, the number of primary variables must be specified when the t2incon object is
created (or its read() method is executed). This can be done by setting the optional integer num_variables parameter,
which defaults to None (meaning PyTOUGH will detect the number of variables). For example:

from t2incons import *
inc = t2incon('model.incon', num_variables = 6)

opens initial conditions for an EOS using six primary variables.

For writing initial conditions files with more than four primary variables, no extra parameters need be set, as the data
stored in the t2incon object determines the number of primary variables, and they will be written out over multiple
lines as required.

Checking block names

By default, when a t2incon object is read from file, the block names are checked to make sure they are valid
TOUGH2 block names (3 characters plus 2 digits). However these checks can be skipped by setting the optional
check_blocknames parameter to False. For example:

from t2incons import *
inc = t2incon('model.incon', check_blocknames = False)

5.2.2 Methods

The main methods of a t2incon object are listed in the table below.

Table 2: Methods of a t2incon object

Method Type Description
add_incon – adds a set of initial conditions for one block
delete_incon – deletes the initial conditions for one block
empty – deletes all initial conditions from the object
insert_incon – inserts initial conditions for one block at a specified index
read – reads initial conditions from file
transfer_from – transfers initial conditions from one grid to another
write – writes initial conditions to file

5.2. t2incon objects 93

PyTOUGH Documentation, Release 1.6.2

Details of these methods are as follows.

add_incon(incon)

Adds a set of initial conditions for a single block.

Parameters:

• incon: t2blockincon
Initial conditions for the block.

delete_incon(blockname)

Deletes a set of initial conditions for a single block.

Parameters:

• blockname: string
Name of the block at which initial conditions are to be deleted.

empty()

Deletes initial conditions for all blocks.

insert_incon(index,incon)

Inserts a set of initial conditions for a single block at the specified index.

Parameters:

• index: integer
Index (zero-based) at which to insert the initial conditions.

• incon: t2blockincon
Initial conditions for the block.

read(filename, num_variables = None, check_blocknames = True)

Reads initial conditions from file.

Parameters:

• filename: string
Name of the initial conditions file to be read.

• num_variables: integer or None

94 Chapter 5. TOUGH2 initial conditions

PyTOUGH Documentation, Release 1.6.2

If reading initial conditions files with more than four primary variables, set to the number of primary variables.
Otherwise, the default None value can be used, in which case the number of primary variables will be detected
automatically.

• check_blocknames: Boolean
Whether to check if block names in the file are valid TOUGH2 block names (3 characters followed by 2 digits).

transfer_from(sourceinc, sourcegeo, geo, mapping={}, colmapping={})

Transfers initial conditions from another t2incon object sourceinc, using the two corresponding mulgrid geometry
objects sourcegeo and geo, and optionally the block and column mappings between the two grids (which are created
if not specified).

Parameters:

• sourceinc: t2incon
Source initial conditions object.

• sourcegeo: mulgrid
Geometry object corresponding to the source initial conditions.

• geo: mulgrid
Geometry object for the grid to be transferred to.

• mapping: dictionary
Dictionary mapping block names from geo to sourcegeo.

• colmapping: dictionary
Dictionary mapping column names from geo to sourcegeo.

write(filename, reset=True)

Writes initial conditions to file.

Parameters:

• filename: string
Name of the initial conditions file to be written.

• reset: Boolean
Set to False if timing information is not to be reset - e.g. if restarting a transient simulation.

5.2. t2incon objects 95

PyTOUGH Documentation, Release 1.6.2

5.3 t2blockincon objects

A t2blockincon object represents the initial conditions for a particular block. The properties of a t2blockincon
object are given in the table below. The permeability property is used only by TOUGHREACT. If no values are
specified for porosity, permeability, nseq or nadd, their values are None. A t2blockincon object has no meth-
ods.

The variable property of a t2blockincon can be more easily accessed simply by adding the required (zero-based)
variable index after the object. For example, for a t2blockincon object b, the value of the second variable is given
simply by b[1].

To create a new t2blockincon object, simply invoke the class name with values of the desired properties, e.g.:

binc = t2blockincon(block = 'abc10', porosity = 0.1, variable = [101.3e3, 28.])

Table 3: Properties of a t2blockincon object

Property Type Description
block string block name
nadd integer or None optional block index increment between additional blocks with the same initial

conditions
nseq integer or None optional number of additional blocks with the same initial conditions
permeability np.array or

None
optional permeability for the block (TOUGHREACT only)

porosity float or None optional porosity for the block
variable list list of thermodynamic variable values for the block

5.4 Reading save files and converting to initial conditions

TOUGH2 writes a save file (SAVE, or *.save for AUTOUGH2) at the end of the simulation, which has a format almost
the same as that of an initial conditions file and can be used to start a subsequent run. A save file generally has some
extra timing information at the end which can be used to restart a simulation at a particular time. However, in many
cases, e.g when running natural state simulations, we want to restart at the original start time and this timing information
must be discarded.

PyTOUGH will read a save file into a t2incon object. This can then be written to file, providing a simple way to
convert save files into incon files. By default, the timing information is discarded when writing (it can be retained by
setting the reset parameter of the write method to False). For example:

t2incon('model1.save').write('model2.incon')

will read the save file 'model1.save', convert it to initial conditions, and write it to the initial conditions file 'model2.
incon'.

96 Chapter 5. TOUGH2 initial conditions

PyTOUGH Documentation, Release 1.6.2

5.5 Example

The following piece of Python script reads in a save file and prints out a table of block names and temperatures for
the first 10 blocks. It then adds an extra variable to each initial condition and gives it a constant value (giving a new
column in the initial conditions file), and finally writes out the edited initial conditions to a new file.

Adding a new variable to each initial condition can be useful when e.g. changing from one TOUGH2 equation of state
(EOS) module to another, as different EOS modules may have different numbers of primary thermodynamic variables.

from t2incons import *
inc = t2incon('model1.save')
for blk in inc[0:10]:

print('Block %5s: temperature = %5.1f' % (blk.block,blk[1]))
patm = 101.3e3
for blk in inc: blk.variable.append(patm)
inc.write('model2.incon')

5.5. Example 97

PyTOUGH Documentation, Release 1.6.2

98 Chapter 5. TOUGH2 initial conditions

CHAPTER

SIX

TOUGH2 LISTING FILES

6.1 Introduction

The t2listing library in PyTOUGH contains classes and routines for reading TOUGH2 listing files. It can be im-
ported using the command:

from t2listing import *

Listing files produced by AUTOUGH2, TOUGH2, TOUGH2_MP, TOUGH+ and TOUGH3 have different formats but
are all supported. The main listing files produced by TOUGHREACT are also supported. (There is also a separate
toughreact_tecplot class for handling the additional Tecplot output files produced by TOUGHREACT.)

6.2 t2listing objects

The t2listing library defines a t2listing class, used for representing TOUGH2 listing files.

Example:

lst = t2listing()

creates an empty t2listing object called lst.

lst = t2listing(filename)

creates a t2listing object called lst and reads its contents from file filename.

6.2.1 Properties

The main properties of a t2listing object are listed in the table below.

99

PyTOUGH Documentation, Release 1.6.2

Element, connection and generation tables

There are three main ‘table’ properties, corresponding to the element, connection and generation tables in the listing
file. These are all of type listingtable and provide access to the simulation results. Not all of these tables will necessarily
be present - this depends on the settings in the data file which produced the results. For TOUGH2 results, a fourth
primary table may also be present, containing primary variables and their changes, if the KDATA parameter is set to
3. TOUGH+ results can also contain additional element tables containing other calculated quantities; these are named
element1, element2 etc. A list of names of all available tables is given by the property.

For example, for a t2listing object lst, lst.element['AR210']['Temperature'] gives the temperature
at block ‘AR210’, at the current time. Blocks can also be identified by index rather than name, so that lst.
element[120]['Pressure'] gives the pressure at the block with (zero-based) index 120.

These tables can also be accessed to give all results for a given block, or for a given column in the table. For example,
lst.element['AR210'] returns a dictionary containing all results at block ‘AR210’, referred to by the name of each
table column. lst.element['Temperature'] returns an np.array containing the temperatures at all blocks in the
model. (Hence, lst.element['Pressure'][120] gives the same result as lst.element[120]['Pressure'].)

The connection and generation tables work very similarly to the element table, except that connections are referred
to by tuples of block names (rather than single block names), and generators are referred to by tuples of block names
and generator names. So for example, the mass flow rate between blocks ‘AB300’ and ‘AC300’ might be given by
lst.connection['AB300', 'AC300']['Mass flow'].

The names of the columns for each table are read directly from the listing file, and will depend on the TOUGH2 equation
of state (EOS) being used.

Skipping tables

The default behaviour is for a t2listing object to read all tables present in the listing file. However, it is possible
to skip the reading of specified tables if required. This can be useful for speeding up reading of large listing files
where not all tables are required. For example, sometimes the connection data are not required, but for large models
the connection table is often much bigger than the others, so skipping it can make reading significantly faster. Data in
skipped tables are not available either via their corresponding properties or via the history() method.

To skip tables, specify their table names (element, connection etc.) in the optional skip_tables parameter when
creating the t2listing object. (By default, this parameter is an empty list.) For example, to read a listing file with
name ‘output.listing’ into the object lst and skip reading the connection and generation tables:

lst = t2listing('output.listing', skip_tables = ['connection', 'generation'])

File encoding

It is possible to specify the file encoding for the listing file using the optional encoding parameter when creating the
t2listing object. The default for this parameter is “latin-1” encoding which should be fine for reading in most listing
files. If you encounter exotic characters in your listing files which are not read correctly using the default encoding you
may want to try other encodings.

100 Chapter 6. TOUGH2 listing files

PyTOUGH Documentation, Release 1.6.2

Full and short output

AUTOUGH2 allows the use of ‘short’ output, in which a specified selection of block, connection or generator properties
are printed at time steps between normal full output. A t2listing object will read short output results, if they are
present, when producing time histories using the history() method. However it is not possible to navigate to short output
results or access them via the t2listing table properties above.

TOUGH2, TOUGH2_MP, TOUGHREACT, TOUGH+ and TOUGH3 do not support short output.

Navigating in time using time, index and step

The time property returns the time (in seconds) corresponding to the current set of results. It is also possible to set
the time property to navigate to a specific set of full results. For example, lst.time=1.e9 navigates to the set of full
results with time closest to 109s.

The index property gives the index of the current set of results, and can take any value between 0 and num_fulltimes-
1. The value of index can also be set to change to a different set of results in the listing file (e.g. lst.index=12). It
can be incremented and decremented like any other Python integer variable, e.g. lst.index+=1 or lst.index-=2 to
go to the next set of results, or the second to last set respectively.

The step property gives the time step number for the current set of results. This is the number of time steps carried
out in the simulation up to the current set of results (recall that results are not necessarily written to the listing file at
every time step). Again, its value can be set to navigate through the results, e.g. lst.step=100 navigates to the set of
full results with time step number nearest to 100.

The times property returns an np.array of all times at which results (including short output) are given in the listing
file. It has length equal to num_times. The fulltimes property returns an np.array of times at which full results
are given (not including short output), and has length equal to num_fulltimes.

A t2listing object also has methods (as well as properties) for navigating through time.

Listing diagnostics

t2listing objects have two properties that provide diagnostics on the results of the TOUGH2 run.

The convergence property is a dictionary of the maximum absolute differences in the element table between the
second to last and last sets of results in the listing file. This can be used to check convergence of steady-state simulations.
For example:

lst.convergence['Temperature']

gives the largest absolute temperature change between the second to last and last sets of results.

The reductions property is a list of tuples of time step indices at which the time step size was reduced during the sim-
ulation, and the block name at which the maximum residual occurred prior to each reduction. This gives an indication
of problematic times and blocks which caused time step reductions.

6.2. t2listing objects 101

PyTOUGH Documentation, Release 1.6.2

Table 1: Properties of a t2listing object

Property Type Description
connection listingtable connection table for current set of results
convergence dictionary maximum differences in element table between second to last and last sets of

results
element listingtable element table for current set of results
element1 etc. listingtable additional element table for current set of results (TOUGH+ only)
filename string name of listing file on disk
fullsteps np.array array of time step numbers (integer) for full results
fulltimes np.array array of times (float) for full results
generation listingtable generation table for current set of results
index integer index of current set of results
num_fulltimes integer number of sets of full results
num_times integer number of sets of all results (full and short)
primary listingtable primary variable table for current set of results (TOUGH2 only)
reductions list time step indices at which time step was reduced during the simulation
short_types list of

string
types of short output present

simulator string detected simulator (‘AUTOUGH2’, ‘TOUGH2’ etc.)
step integer time step number of current set of results
steps np.array array of time step numbers (integer) for all results (full and short)
table_names list names of available tables
time float time of current set of results
times np.array array of times (float) for all results (full and short)
title string simulation title

6.2.2 Methods

The main methods of a t2listing object are listed in the table below.

Table 2: Methods of a t2listing object

Method Type Description
add_side_recharge – adds side recharge generators to a t2data object
close – closes listing file
first – navigates to the first set of full results
get_difference dictionary maximum differences in element table between two sets of results
history list or tuple time history for a selection of locations and table columns
last – navigates to the last set of full results
next Boolean navigates to the next set of full results
prev Boolean navigates to the previous set of full results
write_vtk – writes results to VTK file

Details of these methods are as follows.

102 Chapter 6. TOUGH2 listing files

PyTOUGH Documentation, Release 1.6.2

add_side_recharge(geo, dat)

Adds side recharge generators to a t2data object dat for a production run, calculated according to the final results
in the listing. These generators represent side inflows due to pressure changes in the blocks on the model’s horizontal
boundaries. Recharge generators are given the names of their blocks- any existing generators with the same names will
be overwritten.

Parameters:

• geo: mulgrid
Geometry object associated with the listing.

• dat: t2data
TOUGH2 data object for the side recharge generators to be added to.

close()

Closes the listing file after use.

first()

Navigates to the first set of full results in the listing file.

get_difference(indexa=None, indexb=None)

Returns dictionary of maximum differences, and locations of difference, of all element table properties between two
sets of results.

Parameters:

• indexa, indexb: integer or None
Indices of results between which the maximum differences are to be calculated. If both indexa and indexb are
provided, the result is the difference between these two result indices. If only one index is given, the result is
the difference between the given index and the one before that. If neither are given, the result is the difference
between the last and penultimate sets of results.

history(selection, short=True, start_datetime=None)

Returns a list of time histories (as np.arrays) for specified locations and table columns in the element, connection
or generation tables. For each selection, a tuple of two np.arrays is returned, one each for times and values. Short
output (AUTOUGH2 only) can be omitted from the history results by setting the short parameter to False. If the
start_datetime parameter is given, times in the output are given as datetimes rather than seconds from the start.

Parameters:

• selection: list of tuples

6.2. t2listing objects 103

PyTOUGH Documentation, Release 1.6.2

Selection of listing tables, locations (or indices) and table columns to produce histories for. Each tuple contains
three elements: the listing table type (‘e’, ‘c’, ‘p’ or ‘g’ for element, connection, primary or generation table
respectively), the block/ connection/ generator name (or index) and the table column name. (If only a single
tuple is given instead of a list of tuples, just the single tuple of times and values for that selection is returned.)
For history of additional element tables in TOUGH+ results, use ‘e1’, ‘e2’ etc. instead of ‘e’. Note that, as for
listing tables, connection and generator names (or ‘keys’) are specified as two-element tuples (see Keys for
different listing table types). If the second element of a selection tuple is an integer, it will be interpreted as the
(zero-based) index of the block, connection or generator in the corresponding table.

• short: Boolean
Whether short output (AUTOUGH2 only) is to be included in the history results - default is True.

• start_datetime: datetime or None
Datetime of the start of the simulation. If None (the default), output times are given as seconds from the start of
the simulation. If a Python datetime is given, then output times are given as datetimes.

Examples:

[(tt,temp), (tq,q), (tg,g)] = lst.history([('e', 'AR210', 'Temperature'),
('c', ('AB300','AC300'), 'Mass flow'), ('g', ('BR110','SO 1'), 'Generation rate')])

returns a list of three tuples of np.arrays, (tt,temp), (tq,q) and (tg,g), giving the times and values of temper-
ature at block ‘AR210’, mass flow at the connection between blocks ‘AB300’ and ‘AC300’, and generation rate in the
generator ‘SO 1’ in block ‘BR110’ respectively.

from datetime import datetime
t0 = datetime(1955, 1, 1)
t,T = lst.history(('e', 'AR210', 'Temperature'), start_datetime = t0)

returns T as an np.array of temperature values, and t as an np.array of Python datetimes, starting at 1 January
1955.

last()

Navigates to the last set of full results in the listing file.

next()

Navigates to the next set of full results in the listing file. Returns False if already at the last set of results (and True
otherwise).

104 Chapter 6. TOUGH2 listing files

PyTOUGH Documentation, Release 1.6.2

prev()

Navigates to the previous set of full results in the listing file. Returns False if already at the first set of results (and
True otherwise).

write_vtk(geo, filename, grid=None, indices=None, flows=False, wells=False, start_time=0,
time_unit='s', flux_matrix=None, blockmap = {}, surface_snap=0.1)

Writes a t2listing object to a set of VTK files on disk, for visualisation with VTK, Paraview, Mayavi etc. The results
in the listing object are written as an ‘unstructured grid’ VTK object with data arrays defined on cells. The data arrays
written correspond to the variables given in the columns of the element table of the t2listing object. (For TOUGH+
results, variables from the additional element tables are also included.) In addition, data arrays from an associated
mulgrid and (optionally) t2grid objects can be included.

If flows is True (and a grid is specified and the listing contains connection data), approximate block-average flux
vectors at the centre of each block are also written, for all variables in the connection table with names ending in ‘flow’.

One *.vtu file is produced for each time step in the t2listing object at which full results are present, and a *.pvd file
is also written. This is usually the file that should actually be opened in Paraview or other software as it contains time
information associated with each *.vtu file.

Optionally, only a subset of the time indices present in the t2listing can be written, according to the indices
parameter. A start time and time unit for the output can optionally be specified.

Parameters:

• geo: mulgrid
The mulgrid geometry object associated with the results. For flexibility, this geometry need not be fully
compatible with the results – for example, it may contain only a subset of the blocks for which results are
present, or the blocks may be in a different order. However, if it is not fully compatible, the writing process will
be slower, and flux vectors will not be written (even if flows is set to True).

• filename: string
Name of the *.pvd file to be written. Names of the individual *.vtu files for each time step are similar but with a
time index appended and the file extension changed.

• grid: t2grid
Name of optional t2grid object associated with the results.

• indices: list or tuple
Optional specification of time indices to include in the output. If set to None (the default), all time indices will
be included.

• flows: Boolean
Set to True if approximate block-centred flux vectors are to be calculated and written, for visualising flows.
Default is False. Note: flow vectors can only be calculated if a grid is specified.

• wells: Boolean
Set to True if a separate VTK file for the wells in the mulgrid object is to be written. Default is False.

• start_time: float
Optional start time of the simulation, i.e. time associated with the first set of results. Default is zero.

• time_unit: string
Optional time unit for the output. TOUGH2 results are given at times in seconds, but this option allows them to
be converted to other units. Options are: ‘s’, ‘h’, ‘d’ and ‘y’, for seconds, hours, days and years respectively.
Default is ‘s’.

6.2. t2listing objects 105

PyTOUGH Documentation, Release 1.6.2

• flux_matrix: scipy.sparse.lil_matrix
Sparse matrix that multiplies a vector of connection values to produce a partition vector of 3-D block average
flows at the (underground) block centres. One of these can be produced using the t2grid.flux_matrix()
method, and a corresponding mulgrid object. A flux matrix will be calculated internally if not supplied.

• blockmap: dictionary
Dictionary mapping the block names in the geometry to the block naming system used in the listing.

• surface_snap: float
Tolerance for specifying how close column surface elevations need to be before being considered “equal” when
constructing surface nodes.

6.3 listingtable objects

A listingtable object represents a table of results in a TOUGH2 listing file (whether it is an element, connection or
generation table). The column headings of the table are taken directly from the corresponding table in the listing file.
The rows of the table may be accessed either by (zero-based) index, or by the ‘key’ for the table row, which depends
on the table type (see table below).

Table 3: Keys for different listing table types

Table type Key
element block name
connection (block name 1, block name 2)
generation (block name, generator name)

Hence, the value in the element table for a given block and column can be accessed by lst.
element[blockname][columnname], or by lst.element[blockindex][columnname] (for a t2listing
object lst). Note that for connection and generation tables, the keys are tuples of two strings. For connection tables,
the order of these two strings (the block names) is not important; if the listing file contains results for (block1, block2),
then results for (block2, block1) can be accessed via the corresponding listingtable object (though the results will
have the opposite sign to those in the file, as they will represent flows in the opposite direction).

The values for an entire row or column of the table can also be accessed, for example lst.element[blockname]
gives the row in the table for a specified block, with the values arranged in a dictionary which can be accessed using
the column names of the table (e.g. lst.element['AR231']['Temperature']). This dictionary for each row also
contains an additional 'key' item which returns the key for that row. Conversely, lst.element[columnname] gives
the column in the table for a specified column name, with the values returned in an np.array (one value for each block
in the grid, for an element table).

6.3.1 listingtable properties

The properties of a listingtable object are given in the table below. The entire list of key values for a listingtable
may be accessed via the row_name property, which contains the key value for each row. The column headings of the
table can similarly be accessed via the column_name list property. The num_rows and num_columns properties of a
listingtable object return the numbers of rows and columns respectively. The num_keys property just returns the
number of keys used to identify each row - generally 1 for an element table and 2 for connection and generation tables.

106 Chapter 6. TOUGH2 listing files

PyTOUGH Documentation, Release 1.6.2

Table 4: Properties of a listingtable object

Property Type Description
column_name list column headings
DataFrame Pandas DataFrame data in DataFrame format
num_columns integer number of columns
num_keys integer number of keys per row
num_rows integer number of rows
row_name list keys for each row

6.3.2 Adding and subtracting

It is possible to perform addition and subtraction operations on listingtable objects. Subtraction can be useful,
for example, when comparing results from different runs. These operations can only be carried out when the row and
column names of the two tables are identical. The resulting table will have the same row and column names as the
original tables, but will contain the element-wise sums or differences.

6.3.3 Converting to DataFrames

A listingtable object has a DataFrame property which returns the entire table in the form of a Pandas DataFrame
object. Pandas is a Python library for data analysis, which you will need to have installed before you can use the
DataFrame property. With Pandas you can do advanced data analysis on your TOUGH2 results. See the Pandas
documentation for more details.

6.3.4 listingtable methods

listingtable objects have one method as described below.

rows_matching(pattern, index=0, match_any=False)

Returns a list of rows in the table with keys matching the specified regular expression string, pattern.

For tables with multiple keys, pattern can be a list or tuple of regular expressions. If a single string pattern is given for
a multiple-key table, the pattern is matched on the index𝑡ℎ key (and any value of the other key - unless the match_any
option is used; see below).

If match_any is set to True, rows are returned with keys matching any of the specified patterns (instead of all of them).
If this option is used in conjunction with a single string pattern, the specified pattern is applied to all keys.

Parameters:

• pattern: string, list or tuple
Regular expression string specifying the pattern to match. For multiple-key tables, this can be a list or tuple of
regular expression strings.

• index: integer
Index of the key to which the pattern is to be applied, for multiple-key tables and when pattern is specified as
a single string.

• match_any: Boolean

6.3. listingtable objects 107

http://pandas.pydata.org/

PyTOUGH Documentation, Release 1.6.2

If False, return only rows with keys matching all of their corresponding patterns. If True, return rows with
keys matching any of the specified patterns - and if a single string pattern is given, apply this to all keys.

6.4 t2historyfile objects

In addition to the main listing file, TOUGH2 can optionally produce extra files containing time history data from
selected blocks, connections or generators, named FOFT, COFT and GOFT files respectively. TOUGH+ can optionally
name these files Elem_Time_Series, Conx_Time_Series and SS_Time_Series instead. (AUTOUGH2 does not
produce separate history files, but can instead produce ‘short output’ at selected blocks, connections or generators
within the listing file itself.)

The t2listing module contains a t2historyfile class for reading and manipulating these history files. History
files produced by TOUGH2, TOUGH2_MP and TOUGH+ are supported, although they all have different formats.
The same class is used for FOFT, COFT and GOFT files. A history file of any of these types can be opened using a
command such as:

hist = t2historyfile(filename)

where filename is the name of the file. It may contain wildcards (*) so that several files matching a pattern are read
in to the same object. This is useful for reading output from TOUGH2_MP, which creates separate history files for
each processor used in the calculation (e.g. FOFT_P.000, FOFT_P.001, etc.). It is assumed that all files opened are
however of the same type (FOFT, COFT or GOFT).

Once a history file has been read in, history results for a particular key (i.e. block, connection or generator) can be
extracted. For TOUGH2_MP, the keys are the block names for FOFT files, tuples of block names for COFT files, and
tuples of block names and source names for GOFT files. For example:

foft = t2historyfile('FOFT_P.*')
blockname = 'fmq20'
results = foft[blockname]

This will return a dictionary containing an np.array for each column in the file, indexed by the column name. For
example the temperature history at this block would be given by:

temp = foft[blockname]['TEMPERATURE']

Results at a particular time can also be found:

time = 3.156e7
result = foft[blockname, time]

Again, this will return a dictionary with one item for each column, but in this case each item is just a single floating
point number instead of an array.

For TOUGH2 rather than TOUGH2_MP, the keys are integer indices of blocks, connections or generators, rather than
names or tuples of names. Similarly, the column names are just integers. This is because the key names and column
names are not given in TOUGH2 history files. Aside from these differences, they can be used in the same way as
TOUGH2_MP history files, for example:

foft = t2historyfile('FOFT')
blkindex = 123
temp = foft[blkindex][1]

108 Chapter 6. TOUGH2 listing files

PyTOUGH Documentation, Release 1.6.2

For TOUGH+ connection and generator history files (COFT and GOFT, or Conx_Time_Series and SS_Time_Series),
multiple connections and generators can be specified as usual in the TOUGH2 input data file, but individual results for
them are not written to the history file. Instead, the results for them are summed. As a result, there are no ‘keys’ as
such for accessing individual results, and the t2historyfile works a little differently. An array containing the data
in each column can be accessed by specifying the column name, for example:

ct = t2historyfile('Conx_Time_Series')
qh = ct['HeatFlow']

The properties of a t2historyfile object are given in the table below.

Table 5: Properties of a t2historyfile object

Property Type Description
column_name list column headings
key_name list names of keys
num_times integer number of times
num_columns integer number of data columns
num_rows integer total number of data (for all keys)
simulator string detected simulator (‘TOUGH2’ or ‘TOUGH2_MP’)
times np.array times at which results are given
type string history type (‘FOFT’, ‘COFT’ or ‘GOFT’)

6.5 toughreact_tecplot objects

The t2listing library also defines a toughreact_tecplot class, used for representing the additional Tecplot output
files produced by TOUGHREACT.

Example:

tp = toughreact_tecplot(filename, blocks)

creates a toughreact_tecplot object called tp and reads its contents from file filename. The blocks object passed
in as a second parameter specifies the block names (see Specifying block names).

6.5.1 Differences from t2listing objects

A toughreact_tecplot object is similar to a t2listing object in many respects. Apart from the need to specify
the block names on creation (see Specifying block names), the other main difference is that unlike a t2listing ob-
ject, which usually contains several listingtable objects, a toughreact_tecplot object contains only one: the
element table. Because of this, when using the history method, tables need not be specified.

These Tecplot files do not contain any information about time step numbers, so t2listing properties like step and
steps are not present in a toughreact_tecplot object. There is also no title property, as this is not present in the
Tecplot file.

There is also no ‘short’ output in a Tecplot file, so a toughreact_tecplot object does not have properties like
fulltimes, as this would just be the same as the times property. There are also no diagnostic methods like
convergence or reductions.

6.5. toughreact_tecplot objects 109

PyTOUGH Documentation, Release 1.6.2

6.5.2 Specifying block names

In the Tecplot file, results are not associated with block names, though they appear in the same order as in the TOUGH2
data file used to generate the results. To make results accessible by block name, a second parameter containing the block
names must be specified when a toughreact_tecplot object is created. This parameter is not optional. It can be
either:

• a list of strings specifying the block names

• a mulgrid geometry object

• a t2grid object

6.5.3 Properties

The main properties of a toughreact_tecplot object are listed in the table below. For more details, see the corre-
sponding properties of the t2listing class.

Table 6: Properties of a toughreact_tecplot object

Property Type Description
element listingtable element table for current set of results
filename string name of listing file on disk
index integer index of current set of results
num_times integer number of sets of results
time float time of current set of results
times np.array array of times (float) for all results

6.5.4 Methods

The methods of a toughreact_tecplot object are listed in the table below.

Table 7: Methods of a toughreact_tecplot object

Method Type Description
close – closes file
first – navigates to the first set of full results
history list or tuple time history for a selection of locations and table columns
last – navigates to the last set of full results
next Boolean navigates to the next set of full results
prev Boolean navigates to the previous set of full results
write_vtk – writes results to VTK file

Details of these methods are as follows.

110 Chapter 6. TOUGH2 listing files

PyTOUGH Documentation, Release 1.6.2

close()

Closes the file after use.

first()

Navigates to the first set of results in the Tecplot file.

history(selection)

Returns a list of time histories (as np.arrays) for specified locations and table columns in the element table. For each
selection, a tuple of two np.arrays is returned, one each for times and values.

Parameters:

• selection: list of tuples
Selection of locations (or indices) and table columns to produce histories for. Each tuple contains two elements:
block name and table column name. (If only a single tuple is given instead of a list of tuples, just the single
tuple of times and values for that selection is returned.)

last()

Navigates to the last set of results in the Tecplot file.

next()

Navigates to the next set of results in the Tecplot file. Returns False if already at the last set of results (and True
otherwise).

prev()

Navigates to the previous set of results in the Tecplot file. Returns False if already at the first set of results (and True
otherwise).

6.5. toughreact_tecplot objects 111

PyTOUGH Documentation, Release 1.6.2

write_vtk(geo, filename, grid=None, indices=None, start_time=0, time_unit='s', blockmap =
{}, surface_snap=0.1)

Writes a toughreact_tecplot object to a set of VTK files on disk, for visualisation with VTK, Paraview, Mayavi
etc. The results in the element table of the Tecplot file object are written as an ‘unstructured grid’ VTK object with data
arrays defined on cells. The data arrays written correspond to the variables given in the columns of the element table
of the toughreact_tecplot object. In addition, data arrays from an associated mulgrid and (optionally) t2grid
objects can be included.

One *.vtu file is produced for each time step in the toughreact_tecplot object, and a *.pvd file is also written. This
is usually the file that should actually be opened in Paraview or other software as it contains time information associated
with each *.vtu file.

Optionally, only a subset of the time indices present in the toughreact_tecplot can be written, according to the
indices parameter. A start time and time unit for the output can optionally be specified.

Parameters:

• geo: mulgrid
The mulgrid geometry object associated with the results. For flexibility, this geometry need not be fully
compatible with the results – for example, it may contain only a subset of the blocks for which results are
present, or the blocks may be in a different order. However, if it is not fully compatible, the writing process will
be slower.

• filename: string
Name of the *.pvd file to be written. Names of the individual *.vtu files for each time step are similar but with a
time index appended and the file extension changed.

• grid: t2grid
Name of optional t2grid object associated with the results.

• indices: list or tuple
Optional specification of time indices to include in the output. If set to None (the default), all time indices will
be included.

• start_time: float
Optional start time of the simulation, i.e. time associated with the first set of results. Default is zero.

• time_unit: string
Optional time unit for the output. TOUGHREACT Tecplot results are given at times in years, but this option
allows them to be converted to other units. Options are: ‘s’, ‘h’, ‘d’ and ‘y’, for seconds, hours, days and years
respectively. Default is ‘s’.

• blockmap: dictionary
Dictionary mapping the block names in the geometry to the block naming system used in the Tecplot output.

• surface_snap: float
Tolerance for specifying how close column surface elevations need to be before being considered “equal” when
constructing surface nodes.

112 Chapter 6. TOUGH2 listing files

PyTOUGH Documentation, Release 1.6.2

6.6 Examples

6.6.1 Slice plot of drawdown

This script shows a vertical slice plot along the model’s x-axis of the difference in pressure (i.e. drawdown) between
the start and end of a simulation.

from mulgrids import *
from t2listing import *
from copy import copy

geo = mulgrid('gmodel.dat')
results = t2listing('model.listing')

results.first()
p0 = copy(results.element['Pressure'])
results.last()
p1 = results.element['Pressure']

geo.slice_plot('x', (p1-p0)/1.e5, 'Pressure\ difference', 'bar')

(Note: the copy command is needed, otherwise the arrays p0 and p1 would both contain the final values of pressure
after the results.last() command.)

6.6.2 Pressure-temperature diagram

This script plots model results from a specified block on a pressure-temperature diagram.

from t2listing import *
import matplotlib.pyplot as plt

lst = t2listing('model.listing')
blk = ' n 60'
[(tp,p), (tt,t)] = lst.history([('e', blk, 'Pressure'), ('e', blk, 'Temperature')])

plt.plot(t, p/1.e5, 'o-')
plt.xlabel('T (\degreeC)')
plt.ylabel('P (bar)')
plt.show()

6.6.3 Comparing results of two models

This script reads grids and results for two different models, a coarse model and a fine one, and produces a comparison
plot of the time history of temperature for both models at a given point.

from mulgrids import *
from t2listing import *
import matplotlib.pyplot as plt

geoc, geof = mulgrid('gcoarse.dat'), mulgrid('gfine.dat')
coarse, fine = t2listing('coarse.listing'), t2listing('fine.listing')

(continues on next page)

6.6. Examples 113

PyTOUGH Documentation, Release 1.6.2

(continued from previous page)

p = [47.e3, 0.0, -7000.0]
blkc = geoc.block_name_containing_point(p)
blkf = geof.block_name_containing_point(p)

tc, tempc = coarse.history(('e', blkc, 'Temperature'))
tf, temp = fine.history(('e', blkf, 'Temperature'))

plt.plot(tc, tempc, 'o-', label = 'coarse model')
plt.plot(tf, tempf, 's-', label = 'fine model')
plt.xlabel('time (s)')
plt.ylabel('Temperature (\degreeC)')
plt.legend()

plt.show()

114 Chapter 6. TOUGH2 listing files

CHAPTER

SEVEN

TOUGH2 THERMODYNAMICS

7.1 Introduction

The t2thermo library in PyTOUGH contains a Python implementation of the thermodynamic routines used in
TOUGH2. These can be used to calculate the thermodynamic properties of water and steam under a range of con-
ditions. They are based on a subset of the IFC-67 thermodynamic formulation.

The t2thermo library can be imported using the command:

from t2thermo import *

The functions available through the t2thermo library are listed in the table below.

Table 1: t2thermo functions

Function Type Description
cowat tuple density and internal energy of liquid water
sat float saturation pressure as a function of temperature
region integer thermodynamic region
separated_steam_fraction float separated steam fraction for given enthalpy and separator pressure
supst tuple density and internal energy of dry steam
tsat float saturation temperature as a function of pressure
visw float dynamic viscosity of water
viss float dynamic viscosity of steam

7.2 Thermodynamic functions

The thermodynamic routines used in TOUGH2 provide functions for liquid water and dry steam. These functions
calculate secondary parameters from the primary thermodynamic variables. Their names follow the subroutine names
used in the TOUGH2 code.

115

PyTOUGH Documentation, Release 1.6.2

7.2.1 Liquid water: cowat(t, p, bounds = False)

The cowat function returns a two-element tuple (d,u) of density (kg/m3) and internal energy (J/kg) of liquid water as
a function of temperature t (°C) and pressure p (Pa).

Parameters:

• t: float
Temperature (°C)

• p: float
Pressure (Pa)

• bounds: Boolean
If True, return None if the input temperature and pressure are outside the operating range of the routine (as
defined by thermodynamic region 1 of the IFC-67 specification).

7.2.2 Dry steam: supst(t, p, bounds = False)

The supst function returns a two-element tuple (d,u) of density (kg/m3) and internal energy (J/kg) of dry steam as a
function of temperature t (°C) and pressure p (Pa).

Parameters:

• t: float
Temperature (°C)

• p: float
Pressure (Pa)

• bounds: Boolean
If True, return None if the input temperature and pressure are outside the operating range of the routine (as
defined by thermodynamic region 2 of the IFC-67 specification).

7.3 Viscosity

7.3.1 Liquid water: visw(t,p,ps)

The visw function returns the dynamic viscosity (Pa.s) of liquid water as a function of temperature t (°C), pressure
(Pa) and saturation pressure (Pa).

Parameters:

• t: float
Temperature (°C)

• p: float
Pressure (Pa)

• ps: float
Saturation pressure (Pa), calculated for example using the sat function.

116 Chapter 7. TOUGH2 thermodynamics

PyTOUGH Documentation, Release 1.6.2

7.3.2 Dry steam: viss(t,d)

The viss function returns the dynamic viscosity (Pa.s) of dry steam as a function of temperature t (°C) and density d
(kg/m3).

Parameters:

• t: float
Temperature (°C)

• d: float
Density (kg/m3)

7.4 Saturation line: sat(t) and tsat(p)

7.4.1 sat(t, bounds = False)

The sat function returns the saturation pressure (Pa) at a given temperature t (°C), for temperatures below the critical
temperature.

Parameters:

• t: float
Temperature (°C)

• bounds: Boolean
If True, return None if the input temperature is outside the operating range of the routine (i.e. less than 0.01 °C
or greater than the critical temperature, 374.15 °C).

7.4.2 tsat(p, bounds = False)

The tsat function returns the saturation temperature (°C) at a given pressure p (Pa), for pressures below the critical
pressure.

Note that the IFC-67 formulation did not include an explicit formula for calculating saturation temperature as a function
of pressure, so here (as in TOUGH2) this is calculated using an iterative root-finding process on the sat function. The
root-finding function is from the scipy library, so this library must be installed before the tsat function will work.

Parameters:

• p: float
Pressure (Pa)

• bounds: Boolean
If True, return None if the input pressure is outside the operating range of the routine (i.e. less than
sat(0.01) or greater than the critical pressure, 22.12 MPa).

7.4. Saturation line: sat(t) and tsat(p) 117

PyTOUGH Documentation, Release 1.6.2

7.5 Other functions

7.5.1 Separated steam fraction

separated_steam_fraction(h, separator_pressure, separator_pressure2 = None)

Returns the separated steam fraction for a given enthalpy h and separator pressure. A second separator pressure may
be specified in the case of two-stage flash.

Parameters:

• h: float
Enthalpy (J/kg)

• separator_pressure: float
Steam separator pressure (Pa)

• separator_pressure2: float (or None)
Second separator pressure (Pa) for two-stage flash – set to None (the default) for single-stage.

7.5.2 Determining thermodynamic region

region(t, p)

Returns the thermodynamic region (integer, or None) corresponding to the given temperature (°C) and pressure (Pa),
as defined by the IFC-67 specification. The regions are:

1. liquid water

2. dry steam

3. supercritical

4. near-critical

If the input temperature and/or pressure are outside the operating range of the IFC-67 formulation, the routine will
return None.

Parameters:

• t: float
Temperature (°C)

• Pressure: float
Pressure (Pa)

118 Chapter 7. TOUGH2 thermodynamics

PyTOUGH Documentation, Release 1.6.2

7.6 Example

The following script reads in a geometry file and writes an initial conditions file with approximate hydrostatic conditions
corresponding to a specified vertical temperature gradient. In this case, the model has a simple flat surface, so that each
column has the same number of layers. The cowat function is used to calculate the fluid density at each layer, and
hence the approximate vertical pressure distribution.

from mulgrids import *
from t2thermo import *

geo = mulgrid('gmodel.dat')

patm, tatm = 101.325e3, 15.0
ptblk = np.zeros((geo.num_blocks, 2))
ptblk[:,0] = patm; ptblk[:,1] = tatm

g = 9.8
p, t = patm, tatm
thick = 0.0
tgradient = 30 # deg C/km
for lay in geo.layerlist[1:]:

d = cowat(t, p)[0]
thisthick = lay.top - lay.bottom
h = 0.5 * (thick + thisthick)
p += d * g * h
t += tgradient / 1.e3 * h
thick = thisthick
for col in geo.columnlist:

blkname = geo.block_name(lay.name, col.name)
iblk = geo.block_name_index[blkname]
ptblk[iblk] = [p, t]

inc = dat.grid.incons(ptblk)
inc.write('model.incon')

7.6. Example 119

PyTOUGH Documentation, Release 1.6.2

120 Chapter 7. TOUGH2 thermodynamics

CHAPTER

EIGHT

IAPWS-97 THERMODYNAMICS

8.1 Introduction

The IAPWS97 library in PyTOUGH contains a Python implementation of the main functions of the International As-
sociation for the Properties of Water and Steam (IAPWS) 1997 thermodynamic formulation. These can be used to
calculate the thermodynamic properties of water, steam and supercritical water. The IAPWS-97 supersedes the IFC-
67 formulation used in TOUGH2, being generally faster and more accurate, as well as having a simpler representation
of the thermodynamic region around the critical point.

The operating range of the IAPWS-97 formulation is shown in the pressure-temperature plot below. It covers temper-
atures up to 800°C and pressures up to 100 MPa, and is divided into four thermodynamic regions:

1. liquid water

2. dry steam

3. supercritical fluid

4. two-phase

The two-phase region (4) follows the saturation line on the pressure-temperature plot (the boundary between liquid
water and dry steam), up to the critical point 𝐶 (𝑇 = 373.946 °C, 𝑃 = 22.064 MPa), where the distinction between
liquid water and steam disappears. Region 3 covers supercritcal fluid (above the critical point) and also near-critical
fluid, just below the critical point. The boundary between regions 1 and 3 (liquid water and supercritical) is aribitrarily
set at 𝑇 = 350 °C. The boundary between regions 2 and 3 (dry steam and supercritical) is described by the b23p and
b23t functions.

121

http://www.iapws.org/

PyTOUGH Documentation, Release 1.6.2

0

25

50

75

100

0 200 400 600 800

P
re

ss
u

re
 (

M
P

a)

Temperature (°C)

1 3 2

4

Critical
point

(Liquid) (Super-
critical)

(Vapour)

(Two-phase)

The IAPWS97 library can be imported using the command:

from IAPWS97 import *

The functions available through the IAPWS97 library are listed in the table below.

Table 1: IAPWS97 functions

Function Type Description
b23p float pressure on boundary between steam and supercritical regions, as a function of

temperature
b23t float temperature on boundary between steam and supercritical regions, as a function

of pressure
cowat tuple density and internal energy of liquid water
den-
sity_temperature_plot

– draws region boundaries on a density-temperature plot

pres-
sure_temperature_plot

– draws region boundaries on a pressure-temperature plot

region inte-
ger

thermodynamic region

sat float saturation pressure as a function of temperature
super tuple pressure and internal energy of supercritical fluid
supst tuple density and internal energy of dry steam
tsat float saturation temperature as a function of pressure
visc float dynamic viscosity of water, steam or supercritical fluid

122 Chapter 8. IAPWS-97 thermodynamics

PyTOUGH Documentation, Release 1.6.2

8.2 Thermodynamic functions

The IAPWS-97 formulation provides thermodynamic functions for liquid water, dry steam and supercritical fluid.
These functions calculate secondary parameters from the primary thermodynamic variables.

8.2.1 Liquid water: cowat(t,p)

The cowat function returns a two-element tuple (d,u) of density (kg/m3) and internal energy (J/kg) of liquid water as
a function of temperature t (°C) and pressure p (Pa).

Parameters:

• t: float
Temperature (°C)

• p: float
Pressure (Pa)

8.2.2 Dry steam: supst(t,p)

The supst function returns a two-element tuple (d,u) of density (kg/m3) and internal energy (J/kg) of dry steam as a
function of temperature t (°C) and pressure p (Pa).

Parameters:

• t: float
Temperature (°C)

• p: float
Pressure (Pa)

8.2.3 Supercritical fluid: super(d,t)

The super function returns a two-element tuple (p,u) of pressure (Pa) and internal energy (J/kg) of supercritical fluid
as a function of density d (kg/m3) and temperature t (°C).

Parameters:

• d: float
Density (kg/m3)

• t: float
Temperature (°C)

8.2. Thermodynamic functions 123

PyTOUGH Documentation, Release 1.6.2

8.3 Viscosity: visc(d,t)

The visc function returns the dynamic viscosity (Pa.s) of liquid water, dry steam or supercritical fluid as a function of
density d (kg/m3) and temperature t (°C). This function is based on the supplementary “IAPWS Formulation 2008 for
the Viscosity of Ordinary Water Substance”, without the critical enhancement of viscosity near the critical point.

Parameters:

• d: float
Density (kg/m3)

• t: float
Temperature (°C)

8.4 Region boundaries

These functions describe the boundaries between the four thermodynamic regions of the IAPWS-97 formulation. There
is no equation for the boundary between regions 1 and 3 as this is simply the line 𝑇 = 350 °C.

8.4.1 Saturation line: sat(t) and tsat(p)

sat(t)

The sat function returns the saturation pressure (Pa) at a given temperature t (°C), for temperatures below the critical
temperature.

Parameters:

• t: float
Temperature (°C)

tsat(p)

The tsat function returns the saturation temperature (°C) at a given pressure p (Pa), for pressures below the critical
pressure.

Parameters:

• p: float
Pressure (Pa)

124 Chapter 8. IAPWS-97 thermodynamics

PyTOUGH Documentation, Release 1.6.2

8.4.2 Steam/supercritical boundary

b23p(t)

The b23p function returns the pressure (Pa) on the boundary of the dry steam and supercritical regions (regions 2 and
3) at a given temperature t (°C).

Parameters:

• t: float
Temperature (°C)

b23t(p)

The b23t function returns the temperature (°C) on the boundary of the dry steam and supercritical regions (regions 2
and 3) at a given pressure p (Pa).

Parameters:

• p: float
Pressure (Pa)

8.5 Determining thermodynamic region

8.5.1 region(t, p)

Returns the thermodynamic region (integer, or None) corresponding to the given temperature (°C) and pressure (Pa),
as defined by the IAPWS-97 specification. The regions are:

1. liquid water

2. dry steam

3. supercritical

If the input temperature and/or pressure are outside the operating range of the IAPWS-97 formulation, the routine will
return None.

Parameters:

• t: float
Temperature (°C)

• Pressure: float
Pressure (Pa)

8.5. Determining thermodynamic region 125

PyTOUGH Documentation, Release 1.6.2

8.6 Plotting functions

The IAPWS97 library contains two functions used for including the IAPWS-97 thermodynamic region boundaries on
plots.

8.6.1 pressure_temperature_plot(plt)

Draws the IAPWS-97 thermodynamic region boundaries on a pressure-temperature diagram.

Parameters:

• plt: matplotlib.pyplot instance
An instance of the matplotlib.pyplot library, imported in the calling script using e.g. import
matplotlib.pyplot as plt.

8.6.2 density_temperature_plot(plt)

Draws the IAPWS-97 thermodynamic region boundaries on a density-temperature diagram. (This function requires
the Scientific Python (scipy) library to be installed.)

Parameters:

• plt: matplotlib.pyplot instance
An instance of the matplotlib.pyplot library, imported in the calling script using e.g. import
matplotlib.pyplot as plt.

126 Chapter 8. IAPWS-97 thermodynamics

CHAPTER

NINE

MULGRAPH GEOMETRY FILE FORMAT

9.1 Introduction

This section gives a format specification of the MULgraph geometry file. These files can be used to give a geometrical
description of a TOUGH2 model grid, useful for creating grids and visualizing simulation results.

MULgraph geometry files were originally developed for use with MULgraph, a graphical interface for TOUGH2 and
AUTOUGH2 developed at the University of Auckland in the 1990s, and subsequently adopted by the TIM graphical
interface. However, MULgraph geometry files can be used independently of MULgraph or TIM. PyTOUGH is able to
represent the contents of a MULgraph geometry file in a Python script via the mulgrid class.

9.2 Grid structure

9.2.1 Layers and columns

MULgraph geometry files implicitly assume a layered structure, with blocks arranged in layers and columns, and the
same arrangement of columns in each layer. The only exception to this is at the top surface of the model, where layers
are allowed to be incomplete (i.e. not contain all columns) in order to represent topography.

The layers are always of constant vertical thickness. However, the blocks in the top layer are allowed to vary in height,
again to represent variations in ground surface elevation.

9.2.2 Atmosphere blocks

The blocks in the top layer may optionally be connected to the atmosphere- either a single atmosphere block connected
to all columns, or a separate atmosphere block over each column (see Naming conventions and atmosphere types).

9.2.3 Tilted geometries

It is possible to tilt the geometry coordinate axes with respect to the vertical, to represent non-horizontal geometries.
When a TOUGH2 grid is created from such a tilted geometry, only the gravity cosines of the grid connections are
affected.

127

https://tim.readthedocs.io/

PyTOUGH Documentation, Release 1.6.2

9.2.4 Rotating permeability directions

It is also possible to rotate the permeability principal directions with respect to the coordinate axes- for example, to
align permeabilities with a dominant fault direction. When a TOUGH2 grid is created, this can change the permeability
index associated with each connection.

9.3 Geometry types

The original MULgraph file specification allowed for three types of geometry: ‘general’, ‘rectangular’ and ‘radial’.
Only the ‘general’ geometry type is supported by PyTOUGH. It is intended for representing general grids with arbitrary,
possibly unstructured horizontal column arrangements.

The ‘rectangular’ type was a special type for grids with rectangular horizontal column structures. These can also be
represented using the ‘general’ geometry type. Since PyTOUGH contains methods for constructing rectangular grids
within the ‘general’ geometry type, there is usually no longer any significant benefit from using the ‘rectangular’ type.

The ‘radial’ type was intended for grids with radial horizontal column structure. PyTOUGH also contains methods for
creating radial TOUGH2 grids. Simulation results from radial models can also be visualized using a simple one- or
two-dimensional rectangular ‘general’ geometry to represent the grid structure in the radial direction.

9.4 Naming conventions and atmosphere types

The grid block naming convention and atmosphere type used in a MULgraph geometry file are both integers and can
be given values in the range 0 – 3 and 0 – 2 respectively. The meanings of these values are shown in the tables below.

Note that the grid nodes (vertices) are also named according to the column part of the block naming convention. If nam-
ing nodes, columns or layers manually, while the names can in principle be arbitrary (within the naming convention),
it is safest to right-justify them.

The MULgraph block naming conventions all use part of the block name to indicate the layer, and part of it to indicate
the column. In PyTOUGH, it is also possible to use MULgraph geometry files in conjunction with TOUGH2 grids
that follow other naming conventions, by means of a block mapping dictionary.

Block naming convention 3 was not supported by the original MULgraph geometry file format, and produces block
names which do not conform to the TOUGH2 block naming requirements (having numbers in the last two characters). It
can be used to produce grids for other simulators such as Waiwera which do not have these requirements. An alternative
tool for creating such grids is the Layermesh library.

Table 1: MULgraph geometry file naming conventions

Convention Meaning
0 3 characters for column followed by 2 digits for layer
1 3 characters for layer followed by 2 digits for column
2 2 characters for layer followed by 3 digits for column
3 3 characters for column followed by 2 characters for layer

Table 2: MULgraph geometry file atmosphere types

Type Meaning
0 A single atmosphere block
1 One atmosphere block over each column
2 No atmosphere blocks

128 Chapter 9. MULgraph geometry file format

https://github.com/acroucher/layermesh

PyTOUGH Documentation, Release 1.6.2

9.5 File format

MUlgraph geometry files are simple formatted ASCII text files with a header line at the top, followed by a number of
sections. Each section begins with a keyword and ends with a blank line. Each line has fixed format, so the different
values have to be specified in the right text columns.

If you use PyTOUGH scripts to create and manipulate your grid geometries, you don’t need to know anything about the
format of a MULgraph geometry file, because PyTOUGH will handle reading and writing them for you. If, however, for
some reason you do need to know how these files are structured, the format specification for a ‘general’ type geometry
file is given below.

9.5.1 Header

This is a single line containing a number of global parameters of the geometry. Its format is given in the table below.

Note that the block ordering parameter is an extension to the original MULgraph file format.

Table 3: MULgraph geometry file header line format

Name Type LengthColumnsDescription
Geometry type char-

acter
5 1–5 ‘GENER’ for general geometry type; ‘RECTA’ or ‘RADIA’ for other

types (but these are not supported by PyTOUGH)
Naming conven-
tion

inte-
ger

1 6 Block naming convention

Atmosphere type inte-
ger

1 7 Type of atmosphere

Atmosphere vol-
ume

float 10 8–17 Volume of each atmosphere block (default 1020 m3)

Atmosphere con-
nection distance

float 10 18–27 Connection distance for each atmosphere block (default 10-6 m)

Length unit char-
acter

5 28–32 Default is metres (blank); for feet specify ‘FEET’

x-direction cosine float 10 33–42 Cosine of angle between x-axis and gravity vector (default zero); set
positive for tilt in the x-direction

y-direction cosine float 10 43–52 Cosine of angle between y-axis and gravity vector (default zero); set
positive for tilt in the y-direction

Connection type inte-
ger

1 53 Method of calculating connection parameters (default zero)- not sup-
ported by PyTOUGH

Permeability an-
gle

float 10 54–63 Horizontal angle (degrees anti-clockwise) between first permeability
direction and x-axis

Block ordering inte-
ger

2 64–65 Block ordering scheme: 0 for original MULgraph layer/column or-
dering; 1 for PETSc DMPlex ordering (sorted by block type)

9.5. File format 129

PyTOUGH Documentation, Release 1.6.2

9.5.2 Vertices

This section defines the horizontal locations of the grid vertices (nodes), at the corners of the columns. The first line
just contains the keyword ‘VERTI’. Each subsequent line defines the position of a vertex, and has the format given in
the table below. The vertices section is terminated by a blank line.

Table 4: MULgraph geometry file vertices format

Name Type Length Columns Description
Vertex name charac-

ter
3 1–3 Name of the vertex (honouring the column naming convention

x float 10 4–13 x-coordinate of the vertex
y float 10 14–23 y-coordinate of the vertex

9.5.3 Grid

This section specifies the vertices making up each column. The first line just contains the keyword ‘GRID’.

For each grid column, there is then a sub-header line with information about the column, followed by a line for each
vertex making up the column. The lines for the sub-header and each vertex have the formats given in the tables below.
There are no blank lines between the definitions of the grid columns, but there is a blank line at the end of the section.

Table 5: MULgraph geometry file column header format

Name Type LengthColumnsDescription
Column
name

char-
acter

3 1–3 Name of the column (honouring the column naming convention)

Centre
specified

inte-
ger

1 4–5 Set non-zero to specify the column centre location, or zero (default) to
calculate it as the centroid of the column

Number of
vertices

inte-
ger

2 6–7 Number of vertices in the column

Column
centre x

float 10 8–17 x-coordinate of column centre

Column
centre y

float 10 18–27 y-coordinate of column centre

Table 6: MULgraph geometry file column vertex format

Name Type Length Columns Description
Vertex name character 3 1–3 Name of the vertex, as specified in the vertices section

130 Chapter 9. MULgraph geometry file format

PyTOUGH Documentation, Release 1.6.2

9.5.4 Connections

This section defines the horizontal connections between columns. The first line just contains the keyword ‘CONNE’.

Each subsequent line defines a connection between two columns, and has the format given in the table below. There is
a blank line at the end of the section.

Table 7: MULgraph geometry file connection format

Name Type Length Columns Description
First column name character 3 1–3 Name of the first column
Second column name character 3 4–6 Name of the second column

9.5.5 Layers

This section defines the grid layers. The first line just contains the keyword ‘LAYER’.

Each subsequent line defines a layer, with format given in the table below. There are no blank lines between layers, but
there is a blank line at the end of the section.

Table 8: MULgraph geometry file layer format

Name Type Length Columns Description
Layer name charac-

ter
3 1–3 Name of the layer (honouring the layer naming convention)

Bottom eleva-
tion

float 10 4–13 Elevation of the bottom of the layer

Centre elevation float 10 14–23 Elevation of the centre of the layer

9.5.6 Surface elevation

This section is optional, and can be used to define the surface elevation at any or all columns in the grid, to represent
topography. The first line just contains the keyword ‘SURFA’.

Each subsequent line defines the surface elevation at a column, with format given in the table below. There is a blank
line at the end of the section.

Table 9: MULgraph geometry file surface elevation format

Name Type Length Columns Description
Column name character 3 1–3 Name of the column
Surface elevation float 10 4–13 Surface elevation of the column

9.5. File format 131

PyTOUGH Documentation, Release 1.6.2

9.5.7 Wells

This section is optional, and can be used to define the positions of wells (including their tracks) within the geometry.
Deviated wells are supported. The first line of the section just contains the keyword ‘WELLS’.

Each subsequent line defines the location of one point on a well track, with format given in the table below. At least
two points are required to define each well (one for the wellhead and one for the bottom), with more than two points
needed to define a deviated well. There is a blank line at the end of the section.

Table 10: MULgraph geometry file well format

Name Type Length Columns Description
Well name character 5 1–5 Name of the well
x float 10 6–15 x-coordinate of the well location
y float 10 16–25 y-coordinate of the well location
z float 10 26–35 z-coordinate of the well location

132 Chapter 9. MULgraph geometry file format

CHAPTER

TEN

COMMAND REFERENCE

The following table has links to tables of the properties and methods for all the main PyTOUGH Python classes.

Table 1: Properties and methods of main PyTOUGH Python classes

Class
column properties methods
layer properties methods
mulgrid properties methods
rocktype properties –
t2block properties –
t2blockincon properties –
t2connection properties –
t2data properties methods
t2generator properties –
t2grid properties methods
t2historyfile properties –
t2incon properties methods
t2listing properties methods
toughreact_tecplot properties methods
well properties methods

Other functions:

• IFC-67 thermodynamics

• IAPWS-97 thermodynamics

133

PyTOUGH Documentation, Release 1.6.2

134 Chapter 10. Command reference

INDEX

B
blocks, 69

C
columns, 47
connections, 50, 69

G
generators, 89

L
Layermesh, 12
layers, 49

M
MULgraph geometry, 9

block mappings, 16, 53
block names, 52
block ordering, 12
checking, 17
columns, 47
connections, 50
diagnostics, 11
emptying, 22
exporting, 23, 45, 46
file format, 11
files, 2
fitting data, 23
fitting surface, 24
from GMSH, 26
from Layermesh, 26
Layermesh conversion, 12
layers, 49
meshio grid, 33
MINC arrays, 33
nodes, 47
optimizing, 34
permeability directions, 12
plotting, 28, 31, 39
quadtree, 16, 18, 19
reading, 11, 36

rectangular, 36, 64
refining, 37, 38
rotating, 39
searching, 15–18, 20, 27, 34, 48, 49
snapping, 43
tilting, 12
translating, 44
Voronoi, 25
wells, 50
writing, 45

N
nodes, 47

P
Python, 2

3.x, 2
dictionaries, 3
importing, 5
libraries, 4
lists, 3
matplotlib, 5
meshio, 5
numpy, 4
objects, 2
running, 3
scipy, 5
scripts, 4
sets, 3
tuples, 3
tutorials, 2

PyTOUGH, 1
installing, 5
license, 7
testing branch, 6
unit tests, 6

R
rocktypes, 68

T
thermodynamics

135

PyTOUGH Documentation, Release 1.6.2

IAPWS-97, 121
IFC-67, 115

TOUGH2, 1
AUTOUGH2, 1
TOUGH+, 1
TOUGH2-MP, 1
TOUGHREACT, 109

TOUGH2 data files, 1, 71
COFT, 108
converting, 82
FOFT, 108
generators, 89
GOFT, 108
grid, 74
JSON, 84
reading, 85
running, 86
simulation parameters, 78
transferring, 87
writing, 88

TOUGH2 grids, 55
block mappings, 58
blocks, 69
checking, 59
cleaning rocktypes, 59
connections, 69
embedding, 61
emptying, 61
flux matrices, 61
from MULgraph geometry, 62
initial conditions, 62
MINC, 62
radial, 63
reordering, 66
rocktypes, 68
sorting rocktypes, 67
VTK, 67

TOUGH2 initial conditions, 91
TOUGH2 listing files, 2, 99

navigation, 101
short output, 101
tables, 100, 106
time histories, 103
VTK, 105

TOUGH3, 1

V
Visualization Tool Kit (VTK), 5

W
wells, 50

136 Index

	Introduction
	What is PyTOUGH?
	What are TOUGH2 and AUTOUGH2?
	TOUGH2 data files
	MULgraph geometry files
	TOUGH2 listing files

	What is Python?
	Python basics
	Objects
	Lists, dictionaries, tuples and sets

	How to run Python
	Running Python interactively
	Python scripts

	Python libraries
	Numerical Python (“NumPy”)
	Scientific Python (“SciPy”)
	Matplotlib
	Other libraries
	Importing libraries

	Installing PyTOUGH
	Installing the testing branch

	Testing PyTOUGH
	Licensing

	MULgraph geometry files
	Introduction
	mulgrid objects
	Properties
	Grid diagnostics
	Functions for reading data from file
	Block ordering schemes
	Tilted geometries
	Rotating permeability directions
	Conversion to and from Layermesh

	Methods
	add_column(col)
	add_connection(con)
	add_layer(lay)
	add_node(n)
	add_well(w)
	block_contains_point(blockname, pos)
	block_centre(lay, col)
	block_mapping(geo, column_mapping=False)
	block_name(layer_name, column_name, blockmap = {})
	block_name_containing_point(pos, qtree=None, blockmap={})
	block_surface(lay, col)
	block_volume(lay, col)
	check(fix=False,silent=False)
	column_boundary_nodes(columns)
	column_bounds(columns)
	column_containing_point(pos, columns=None, guess=None, bounds=None, qtree=None)
	column_mapping(geo)
	column_name(block_name)
	column_neighbour_groups(columns)
	column_quadtree(columns=None)
	column_surface_layer(col)
	column_values(col, variable, depth = False)
	columns_in_polygon(polygon)
	connects(column1, column2)
	copy_layers_from(geo)
	copy_wells_from(geo)
	decompose_columns(columns = [], mapping = False, chars = ascii_lowercase)
	delete_column(colname)
	delete_connection(colnames)
	delete_layer(layername)
	delete_node(nodename)
	delete_orphans()
	delete_orphan_wells()
	delete_well(wellname)
	empty()
	export_surfer(filename='', aspect=8.0, left=0.0)
	fit_columns(data, alpha=0.1, beta=0.1, columns=[], min_columns=[], grid_boundary=False, silent=False, output_dict=False)
	fit_surface(data, alpha=0.1, beta=0.1, columns=[], min_columns=[], grid_boundary=False, layer_snap=0.0, silent=False)
	from_amesh(input_filename='in', segment_filename='segmt', convention=0, node_tolerance=None, justify='r', chars=ascii_lowercase, spaces=True, block_order=None)
	from_gmsh(filename, layers, convention=0, atmosphere_type=2, top_elevation=0, justify = 'r', chars = ascii_lowercase, spaces=True, block_order=None)
	from_layermesh(mesh, convention=0, atmosphere_type=2, justify='r', chars=ascii_lowercase, spaces=True, block_order=None)
	layer_containing_elevation(elevation)
	layer_mapping(geo)
	layer_name(block_name)
	layer_plot(layer, variable=None, variable_name=None, unit=None, column_names=None, node_names=None, column_centres=None, nodes=None, colourmap=None, linewidth=0.2, linecolour='black', aspect='equal', plt=None, subplot=111, title=None, xlabel='x (m)', ylabel='y (m)', contours=False, contour_label_format='%3.0f', contour_grid_divisions=(100,100), connections=None, colourbar_limits=None, plot_limits=None, wells=None, well_names=True, hide_wells_outside=True, wellcolour='blue', welllinewidth=1.0, wellname_bottom=True, rocktypes=None, allrocks=False, rockgroup=None, flow=None, grid=None, flux_matrix=None, flow_variable_name=None, flow_unit=None, flow_scale=None, flow_scale_pos=(0.5, 0.02), flow_arrow_width=None, connection_flows=False, blockmap = {}, block_names=None)
	line_plot(start=None, end=None, variable, variable_name=None, unit=None, divisions=100, plt=None, subplot=111, title='', xlabel='distance (m)', coordinate=False)
	line_values(start, end, variable, divisions=100, coordinate=False, qtree=None)
	meshio_grid(surface_snap = 0.1, dimension = 3, slice = None)
	minc_array(vals, minc_indices, level=0, outside=0.0)
	nodes_in_columns(columns)
	nodes_in_polygon(polygon)
	node_nearest_to(point, kdtree=None)
	optimize(nodenames=None, connection_angle_weight=1.0, column_aspect_weight=0.0, column_skewness_weight=0.0, pest=False)
	polyline_values(polyline, variable, divisions=100, coordinate=False, qtree=None)
	read(filename)
	rectangular(xblocks, yblocks, zblocks, convention=0, atmos_type=2, origin=[0,0,0], justify='r', case=None, chars=ascii_lowercase, spaces=True, block_order=None)
	reduce(columns)
	refine(columns=[], bisect=False, bisect_edge_columns=[], chars = ascii_lowercase, spaces=True)
	refine_layers(layers=[], factor=2, chars = ascii_lowercase, spaces=True)
	rename_column(oldcolname, newcolname)
	rename_layer(oldlayername, newlayername)
	rotate(angle, centre=None, wells=False)
	slice_plot(line=None, variable=None, variable_name=None, unit=None, block_names=None, colourmap=None, linewidth=0.2, linecolour='black', aspect='auto', plt=None, subplot=111, title=None, xlabel='', ylabel='elevation (m)', contours=False, contour_label_format='%3.0f', contour_grid_divisions=(100,100), colourbar_limits=None, plot_limits=None, column_axis=False, layer_axis=False, wells=None, well_names=True, hide_wells_outside=False, wellcolour='blue', welllinewidth=1.0, wellname_bottom=False, rocktypes=None, allrocks=False, rockgroup=None, flow=None, grid=None, flux_matrix=None, flow_variable_name=None, flow_unit=None, flow_scale=None, flow_scale_pos=(0.5, 0.02), flow_arrow_width=None, connection_flows=False, blockmap = {})
	snap_columns_to_layers(min_thickness=1.0, columns=[])
	snap_columns_to_nearest_layers(columns=[])
	split_column(colname, nodename, chars = ascii_lowercase)
	translate(shift, wells=False)
	well_values(well_name, variable, divisions=1, elevation=False, deviations=False, qtree=None, extend=False)
	write(filename='')
	write_bna(filename='')
	write_exodusii(filename='', arrays=None, blockmap={})
	write_mesh(filename, surface_snap = 0.1, dimension = 3, slice = None, file_format = None)
	write_vtk(filename='', arrays=None, wells=False, blockmap={}, surface_snap=0.1)

	Other objects (node, column, layer, connection and well)
	node objects
	column objects
	contains_point(pos)
	in_polygon(polygon)
	is_against(othercolumn)

	layer objects
	contains_elevation(z)
	translate(shift)

	connection objects
	well objects
	depth_elevation(depth)
	depth_pos(depth)
	elevation_depth(elevation)
	elevation_pos(elevation, extend=False)
	pos_coordinate(index)

	Other functions: block name conversions
	fix_blockname(name)
	unfix_blockname(name)

	Block mappings: handling other block naming conventions

	TOUGH2 grids
	Introduction
	t2grid objects
	Properties
	Methods
	+
	add_block(block)
	add_connection(connection)
	add_rocktype(rock)
	block_index(blockname)
	blockmap(geo, index = None)
	calculate_block_centres(geo)
	check(fix=False,silent=False)
	clean_rocktypes()
	connection_index(blocknames)
	copy_connection_directions(geo,grid)
	delete_block(blockname)
	delete_connection(connectionname)
	delete_rocktype(rocktypename)
	demote_block(blockname)
	embed(subgrid, connection)
	empty()
	flux_matrix(geo, blockmap = {})
	fromgeo(geo)
	incons(values=(101.3e3,20.))
	minc(volume_fractions, spacing=50., num_fracture_planes=1, blocks=None, matrix_blockname=None, minc_rockname=None, proximity=None, atmos_volume=1.e25, incon=None, fracture_connection_distance=0.)
	radial(rblocks, zblocks, convention=0, atmos_type=2, origin=[0,0], justify='r', case=None, dimension=2, blockmap={}, chars=ascii_lowercase, spaces=True)
	rectgeo(origin_block=None, atmos_volume=1.e25, remove_inactive=False, convention=0, atmos_type=2, justify='r', chars=ascii_lowercase, spaces=True, layer_snap=0.1, block_order=None)
	rename_blocks(blockmap = {}, fix_blocknames = True)
	rename_rocktype(rockname, newrockname)
	reorder(block_names, connection_names=None, geo=None)
	rocktype_frequency(rockname)
	sort_rocktypes()
	write_vtk(geo, filename, wells=False, blockmap = {}, surface_snap=0.1)

	Other objects (rocktype, t2block and t2connection)
	rocktype objects
	t2block objects
	t2connection objects

	Example

	TOUGH2 data files
	Introduction
	t2data objects
	Properties
	capillarity property
	diffusion property
	echo_extra_precision property
	end_keyword property
	extra_precision property
	filename property
	generator property
	generatorlist property
	grid property
	history_block property
	history_connection property
	history_generator property
	incon property
	indom property
	lineq property
	meshfilename property
	meshmaker property
	more_option property
	multi property
	noversion property
	num_generators property
	output_times property
	parameter property
	relative_permeability property
	selection property
	short_output property
	simulator property
	solver property
	start property
	title property
	type property

	Functions for reading data from file
	Methods
	add_generator(generator)
	convert_to_AUTOUGH2(warn=True, MP=False, simulator='AUTOUGH2.2', eos='EW')
	convert_to_TOUGH2(warn=True, MP=False)
	clear_generators()
	delete_generator(blocksourcenames)
	delete_orphan_generators()
	effective_incons(incons = None)
	generator_index(blocksourcenames)
	json(geo, mesh_filename, atmos_volume = 1.e25, incons = None, eos = None, bdy_incons = None, mesh_coords = 'xyz')
	read(filename, meshfilename='')
	rename_blocks(blockmap={}, invert=False, fix_blocknames = True)
	run(save_filename='', incon_filename='', simulator='AUTOUGH2_2', silent=False, output_filename='')
	specific_generation(type='MASS', name='')
	transfer_from(source, sourcegeo, geo, top_generator=[], bottom_generator=[], sourceinconfilename='', inconfilename='', rename_generators=False, preserve_generation_totals=False)
	total_generation(type='MASS', name='')
	write(filename='', meshfilename='', extra_precision=None, echo_extra_precision=None)

	t2generator objects
	Example

	TOUGH2 initial conditions
	Introduction
	t2incon objects
	Properties
	Functions for reading data from file
	Specifying the number of primary variables
	Checking block names

	Methods
	add_incon(incon)
	delete_incon(blockname)
	empty()
	insert_incon(index,incon)
	read(filename, num_variables = None, check_blocknames = True)
	transfer_from(sourceinc, sourcegeo, geo, mapping={}, colmapping={})
	write(filename, reset=True)

	t2blockincon objects
	Reading save files and converting to initial conditions
	Example

	TOUGH2 listing files
	Introduction
	t2listing objects
	Properties
	Element, connection and generation tables
	Skipping tables
	File encoding
	Full and short output
	Navigating in time using time, index and step
	Listing diagnostics

	Methods
	add_side_recharge(geo, dat)
	close()
	first()
	get_difference(indexa=None, indexb=None)
	history(selection, short=True, start_datetime=None)
	last()
	next()
	prev()
	write_vtk(geo, filename, grid=None, indices=None, flows=False, wells=False, start_time=0, time_unit='s', flux_matrix=None, blockmap = {}, surface_snap=0.1)

	listingtable objects
	listingtable properties
	Adding and subtracting
	Converting to DataFrames
	listingtable methods
	rows_matching(pattern, index=0, match_any=False)

	t2historyfile objects
	toughreact_tecplot objects
	Differences from t2listing objects
	Specifying block names
	Properties
	Methods
	close()
	first()
	history(selection)
	last()
	next()
	prev()
	write_vtk(geo, filename, grid=None, indices=None, start_time=0, time_unit='s', blockmap = {}, surface_snap=0.1)

	Examples
	Slice plot of drawdown
	Pressure-temperature diagram
	Comparing results of two models

	TOUGH2 thermodynamics
	Introduction
	Thermodynamic functions
	Liquid water: cowat(t, p, bounds = False)
	Dry steam: supst(t, p, bounds = False)

	Viscosity
	Liquid water: visw(t,p,ps)
	Dry steam: viss(t,d)

	Saturation line: sat(t) and tsat(p)
	sat(t, bounds = False)
	tsat(p, bounds = False)

	Other functions
	Separated steam fraction
	separated_steam_fraction(h, separator_pressure, separator_pressure2 = None)

	Determining thermodynamic region
	region(t, p)

	Example

	IAPWS-97 thermodynamics
	Introduction
	Thermodynamic functions
	Liquid water: cowat(t,p)
	Dry steam: supst(t,p)
	Supercritical fluid: super(d,t)

	Viscosity: visc(d,t)
	Region boundaries
	Saturation line: sat(t) and tsat(p)
	sat(t)
	tsat(p)

	Steam/supercritical boundary
	b23p(t)
	b23t(p)

	Determining thermodynamic region
	region(t, p)

	Plotting functions
	pressure_temperature_plot(plt)
	density_temperature_plot(plt)

	MULgraph geometry file format
	Introduction
	Grid structure
	Layers and columns
	Atmosphere blocks
	Tilted geometries
	Rotating permeability directions

	Geometry types
	Naming conventions and atmosphere types
	File format
	Header
	Vertices
	Grid
	Connections
	Layers
	Surface elevation
	Wells

	Command reference
	Index

